精英家教网 > 初中数学 > 题目详情
20.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE所叠得△DFE,延长EF交边AB于点G,连接DG,BF,给出以下结论:
①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④S△BEF=$\frac{72}{5}$.
其中所有正确结论的序号是①②④.

分析 根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定Rt△ADG≌Rt△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的,问题得解.

解答 解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
在Rt△ADG和Rt△FDG中,
$\left\{\begin{array}{l}{AD=DF}\\{DG=DG}\end{array}\right.$,
∴Rt△ADG≌Rt△FDG,故①正确;
∵正方形边长是12,
∴BE=EC=EF=6,
设AG=FG=x,则EG=x+6,BG=12-x,
由勾股定理得:EG2=BE2+BG2
即:(x+6)2=62+(12-x)2
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,故②正确;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,故③错误;
S△GBE=$\frac{1}{2}$×6×8=24,S△BEF=$\frac{EF}{EG}$•S△GBE=$\frac{6}{10}$=$\frac{72}{5}$,故④正确.
综上可知正确的结论的是3个,
故答案为:①②④.

点评 本题考查了相似三角形的判定和性质、图形的翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.某地区居民生活用电基本价格为每千瓦时0.50元,若每月用电量超过a千瓦则超过部分按基本电价的80%收费.
(1)某户八月份用电96千瓦时,共交电费46.4元,求a.
(2)若该用户九月份的平均电费为0.48元,则九月份共用电多少千瓦?应交电费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知⊙O是Rt△ABC的外接圆,∠ACB=90°,AC平分∠BAD,CD⊥AD于D,AD交⊙O于E.
(1)求证:CD为⊙O的切线;
(2)若⊙O的直径为8cm,CD=2$\sqrt{3}$cm,求弦AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知等式5+mx|m|-1=0是关于x的一元一次方程,则x=±$\frac{5}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知二次函数y=-x2+(m-1)x+m.
(1)证明:不论m取何值,该函数图象与x轴总有公共点;
(2)若该函数的图象与y轴交点于(0,3),求出顶点坐标并画出该函数;
(3)在(2)的条件下,观察图象,不等式-x2+(m-1)x+m>3的解集是0<x<2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知(x2+mx+n)(x2-3x+2)的展开式不含x3和x2的项,那么m=3,n=7.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,C是线段AB的中点,D是线段AC的中点,且BD=6cm,则AB的长为8cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,圆内接四边形ABCD,AB=3,∠C=135°,若AB⊥BD,则圆的直径是(  )
A.6B.5C.3$\sqrt{3}$D.3$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某加油站销售一批柴油,平均每天可售出20桶,每桶盈利40元,为了支援我市抗旱救灾,加油站决定采取降价措施.经市场调研发现:如果每桶柴油降价1元,加油站平均每天可多售出2桶.
(1)假设每桶柴油降价x元,每天销售这种柴油所获利润为y元,求y与x之间的函数关系式;
(2)每桶柴油降价多少元后出售,农机服务站每天销售这种柴油可获得最大利润?此时,与降价前比较,每天销售这种柴油可多获利多少元?
(3)请分析并回答该种柴油降价在什么范围内,加油站每天的销售利润不低于1200元?

查看答案和解析>>

同步练习册答案