精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在RtABC中,∠C=90°,ADABC的角平分线,DEAB,垂足为点E,AE=BE.

(1)求∠B的度数;

2)如果AC=3cmCD=cm,求ABD的面积.

【答案】(1)∠B=30°;(2)3cm2

【解析】

(1)根据已知条件得到AD=BD,由等腰三角形的性质得到∠B=DAE,根据ADABC的角平分线,求得∠DAE=DAC,于是得到∠B=DAE=DAC,列方程即可得到结论;

(2)根据已知条件求得RtACDRtAED,根据全等三角形的性质得到AE=AC,DE=CD,于是得到AB,即可得到结论.

(1)DEABAE=BE,

AD=BD,

∴∠B=DAE,

ADABC的角平分线,

∴∠DAE=DAC,

∴∠B=DAE=DAC,

∵∠C=90°,

∴∠B+DAE+DAC=90°,

∴∠B=30°;

(2)∵∠C=90°,ADABC的角平分线,DEAB,

RtACDRtAED中,

RtACDRtAED,(HL),

AE=AC=3cm,DE=CD=cm,

AE=BE,

AB=2AE=2×3=6,

SABD=ABDE=×6×=3cm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=2,AO=BO,P是直线CO上的一个动点,∠AOC=60°,当△PAB是以BP为直角边的直角三角形时,AP的长为( )

A. ,1,2 B. ,,2 C. ,,1 D. ,2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣ ;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,平行四边形 ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.

(1)求证:△AOD ≌ △EOC;

(2)连接AC,DE,当∠B∠AEB _______ °时,四边形ACED是正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.从下列四个条件:①BC=B′C,②AC=A′C,③A′CA=B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一幅三角板拼成如图所示的图形,过点CCF平分∠DCEDE于点F

1)求证:CF∥AB

2)求∠DFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ABC=90°,在直线AB上取一点M,使AM=BC,过点AAEABAE=BM,连接EC,再过点AANEC,交直线CM、CB于点F、N.

(1)如图1,若点M在线段AB边上时,求∠AFM的度数;

(2)如图2,若点M在线段BA的延长线上时,且∠CMB=15°,求∠AFM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,矩形OABC的边OA、OC分别落在x轴、y轴上,O为坐标原点,且OA=8,OC=4,连接AC,将矩形OABC对折,使点A与点C重合,折痕ED与BC交于点D,交OA于点E,连接AD,如图①.
(1)求点D的坐标和AD所在直线的函数关系式;
(2)⊙M的圆心M始终在直线AC上(点A除外),且⊙M始终与x轴相切,如图②.
①求证:⊙M与直线AD相切;
②圆心M在直线AC上运动,在运动过程中,能否与y轴也相切?如果能相切,求出此时⊙M与x轴、y轴和直线AD都相切时的圆心M的坐标;如果不能相切,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD相交于点O,OEAB于O,若BOD=40°,则不正确的结论是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

同步练习册答案