精英家教网 > 初中数学 > 题目详情

【题目】计算:

1x2+2x48

22x24x50

3sin60°+cos230°tan45°

43tan60°﹣(﹣10+

【答案】1x1=﹣8x26;(2x1x2;(3;(41

【解析】

1)整理为一元二次方程的一般式,再利用因式分解法求解可得;
2)利用公式法求解可得;
3)先将特殊锐角的三角函数值代入,再根据实数的混合运算顺序和运算法则计算可得;
4)根据实数的混合运算顺序和运算法则计算可得.

解:(1)∵x2+2x480

∴(x+8)(x6)=0

x+80x60

解得x1=﹣8x26

2)∵a2b=﹣4c=﹣5

∴△=(﹣424×2×5)=560

x1x2;;

3)原式=

4)原式=231+2

1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲,乙两人分别从两地相向而行,甲先走3分钟后乙才开始行走,甲到达地后立即停止,乙到达地后立即以另一速度返回地,在整个行驶的过程中,两人保持各自速度匀速行走,甲,乙两人之间的距离(米)与乙出发的时间(分钟)的函数关系如图所示.当甲到达地时,则乙距离地的时间还需要________分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,二次函数yx2+bx+c的图象与x轴交于AB两点,与y轴的负半轴相交于点C(如图),点C的坐标为(0,﹣3),且BOCO

1)求出B点坐标和这个二次函数的解析式;

2)求△ABC的面积;

3)设这个二次函数的图象的顶点为M,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AE⊥BC于点E,延长BC至点F使CF=BE,连结AF,DE,DF.

(1)求证:四边形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,MBC上一点,MEAMMECD于点F,交AD的延长线于点E,若AB4BM2,则DEF的面积为(  )

A.9B.8C.15D.14.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(ABBC)的对角线的交点O旋转(①→②→③),图中的MN分别为直角三角形的直角边与矩形ABCD的边CDBC的交点.

(1)该学习小组成员意外的发现图(三角板一边与CC重合)BNCNCD这三条线段之间存在一定的数量关系:CN2BN2+CD2,请你对这名成员在图中发现的结论说明理由;

(2)在图(三角板一直角边与OD重合),试探究图BNCNCD这三条线段之间的数量关系,直接写出你的结论.

(3)试探究图BNCNCMDM这四条线段之间的数量关系,写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过原点的直线与反比例函数的图象交于两点,点在第一象限。点轴正半轴上,连结交反比例函数图象于点的平分线,过点的垂线,垂足为,连结。若的面积为6,则的值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线型拱桥,当拱顶离水面8m时,水面宽AB12m.当水面上升6m时达到警戒水位,此时拱桥内的水面宽度是多少m

下面给出了解决这个问题的两种方法,请补充完整:

方法一:如图1,以点A为原点,AB所在直线为x轴,建立平面直角坐标系xOy

此时点B的坐标为(      ),抛物线的顶点坐标为(      ),

可求这条抛物线所表示的二次函数的解析式为   

y6时,求出此时自变量x的取值,即可解决这个问题.

方法二:如图2,以抛物线顶点为原点,对称轴为y轴,建立平面直角坐标系xOy

这时这条抛物线所表示的二次函数的解析式为   

y   时,求出此时自变量x的取值为   ,即可解决这个问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2;将△ABC绕点顺时针方向旋转n度后得到△EDC,此时点DAB边上,斜边DEAC边于点F,求n的大小和图中阴影部分的面积.

查看答案和解析>>

同步练习册答案