【题目】已知二次函数y1=m(x﹣1)(x+3)(m≠0)的图象经过点.
(1)求二次函数的解析式;
(2)当x取a,b(a≠b)时函数值相等,求x取a+b时的函数值;
(3)若反比例函数y2=(k>0,x>0)的图象与(1)中的二次函数的图象在第一象限内的交点为A,点A的横坐标x满足2<x0<3,试求实数k的取值范围.
【答案】(1) ; (2) x取a+b时的函数值为; (3) k的取值范围为5<k<18.
【解析】
(1)直接利用待定系数法求函数的解析式即可.
(2)首先根据解析式求得对称轴x=﹣1,因为当x取a,b(a≠b)时函数值相等,则=﹣1,即可求出a+b的值;再将x=a+b代入即可求得函数值;
(3)点A的横坐标x0满足2<x0<3,可通过x=2,x=3两个点上抛物线与反比例函数的大小关系即可求出k的取值范围.
(1)将点(0,-)代入y=a(x﹣1)(x+3),解得a=.
∴抛物线解析式为.
(2)由抛物线y1=m(x﹣1)(x+3)(m≠0)可知抛物线与x轴的交点为(1,0),(﹣3,0),
∴对称轴为直线x==﹣1,
∵当x取a,b(a≠b)时函数值相等,
∴=﹣1,
∴a+b=﹣2.
∴y1=(﹣2﹣1)(﹣2+3)=﹣,
x取a+b时的函数值为﹣.
(3)当2<x<3时,函数y1=x2+x﹣,y1随着x增大而增大,对y2=(k>0),y2随着x的增大而减小.
∵A(x0,y0)为二次函数图象与反比例函数图象的交点,
∴当x0=2时,由反比例函数图象在二次函数上方得y2>y1,
即,解得k>5.
当x0=3时,二次函数数图象在反比例上方得y1>y2,
即,解得k<18.
所以k的取值范围为5<k<18.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线上有两点M(m+1,a)、N(m,b).
(1)当a=-1,m=1时,求抛物线的解析式;
(2)用含a、m的代数式表示b和c;
(3)当a<0时,抛物线满足,,,
求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,、、、为矩形的四个顶点,,,动点、分别从点、同时出发,点以的速度向点移动,一直到达为止,点以的速度向移动.
、两点从出发开始到几秒?四边形的面积为;
、两点从出发开始到几秒时?点和点的距离是.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线x=1的抛物线经过A(﹣1,0)、C(0,3)两点,与x轴的另一个交点为B,点D在y轴上,且OB=3OD
(1)求该抛物线的表达式;
(2)设该抛物线上的一个动点P的横坐标为t
①当0<t<3时,求四边形CDBP的面积S与t的函数关系式,并求出S的最大值;
②点Q在直线BC上,若以CD为边,点C、D、Q、P为顶点的四边形是平行四边形,请求出所有符合条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.
请结合统计图,回答下列问题:
(1)本次调查学生共 人, = ,并将条形图补充完整;
(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
(3)学校让每班在A、B、C、D四钟活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰Rt△ABC,∠BAC=90°,BC=,E为AB上一点,以CE为斜边作等腰Rt△CDE,连接AD,若∠ACE=30°,则AD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数人数 |
第1组 | 6 | |
第2组 | 8 | |
第3组 | 14 | |
第4组 | a | |
第5组 | 10 |
请结合图表完成下列各题:
求表中a的值; 频数分布直方图补充完整;
若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在顶点为P的抛物线y=a(x-h)2+k(a≠0)的对称轴1的直线上取点A(h,k+),过A作BC⊥l交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线m⊥l.又分别过点B,C作直线BE⊥m和CD⊥m,垂足为E,D.在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形.
(1)直接写出抛物线y=x2的焦点坐标以及直径的长.
(2)求抛物线y=x2-x+的焦点坐标以及直径的长.
(3)已知抛物线y=a(x-h)2+k(a≠0)的直径为,求a的值.
(4)①已知抛物线y=a(x-h)2+k(a≠0)的焦点矩形的面积为2,求a的值.
②直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com