精英家教网 > 初中数学 > 题目详情

【题目】已知在平面直角坐标系中有三点,请回答如下问题:

1)在坐标系内描出点的位置:

2)求出以三点为顶点的三角形的面积;

3)在轴上是否存在点,使以三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.

【答案】1)见解析;(25;(3)存在;点的坐标为

【解析】

1)根据点的坐标,直接描点;
2)根据点的坐标可知,ABx轴,且AB=3--2=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;
3)因为AB=5,要求△ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个,分别求解即可.

解:(1)描点如图:

2)依题意,得ABx轴,且AB

SABC

3)存在;
AB=5SABP=10
P点到AB的距离为4
又点Py轴上,
P点的坐标为(05)或(0-3).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】首条贯通丝绸之路经济带的高铁线﹣宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与一带一路沿线国家和地区的经贸合作、人文交流具有十分重要的意义.试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示yx之间的函数关系,根据图象进行一下探究:

【信息读取】

1)西宁到西安两地相距 千米,两车出发后 小时相遇;

2)普通列车到达终点共需 小时,普通列车的速度是 千米/小时.

【解决问题】

3)求动车的速度;

4)普通列车行驶t小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我国民间流传着许多诗歌形式的数学算题,这些题目叙述生动、活泼,它们大都是关于方程和方程组的应用题.由于诗歌的语言通俗易懂、雅俗共赏,因而一扫纯数学的枯燥无味之感,令人耳目一新,回味无穷.请根据下列诗意列方程组解应用题.

周瑜寿属:而立之年督东吴,早逝英年两位数;十比个位正小三,个位六倍与寿符;哪位同学算得快,多少年寿属周瑜?诗的意思是:周瑜病逝时的年龄是一个大于30的两位数,其十位上的数字比个位数字小3,个位上的数字的6倍正好等于这个两位数,求这个两位数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为6x2+11x10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x29x+10

(1)ab的值.

(2)计算这道乘法题的正确结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,等边三角形ABC中,DE分别是BCAC上的点,且AE=CD

1)求证:AD=BE

2)求:∠BFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于点F

(1)求证:∠FAD=FDA

(2)若∠B=50°,求∠CAF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,FCD上一点,EBF上一点,连接AEACDE.若AB=ACAD=AE,∠BAC=DAE=70°AE平分∠BAC,则下列结论中:①ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题再现:

数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.

例如:利用图形的几何意义证明完全平方公式.

证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1

这个图形的面积可以表示成:

a+b2或 a2+2ab+b2

∴(a+b2 a2+2ab+b2

这就验证了两数和的完全平方公式.

类比解决:

1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)

问题提出:如何利用图形几何意义的方法证明:13+2332

如图2A表示11×1的正方形,即:1×1×113

B表示12×2的正方形,CD恰好可以拼成12×2的正方形,因此:BCD就可以表示22×2的正方形,即:2×2×223ABCD恰好可以拼成一个(1+2)×(1+2)的大正方形.

由此可得:13+23=(1+2232

尝试解决:

2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33   .(要求写出结论并构造图形写出推证过程).

3)问题拓广:

请用上面的表示几何图形面积的方法探究:13+23+33++n3   .(直接写出结论即可,不必写出解题过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)y轴上是否存在一点P,使PBC为等腰三角形.若存在,请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 达点B时,点MN同时停止运动,问点MN运动到何处时,MNB面积最大,试求出最大面积.

查看答案和解析>>

同步练习册答案