【题目】阅读下面的解题过程,并在横线上补全推理过程或依据.
已知:如图, DE∥BC,DF、BE分别平分∠ADE、∠ABC.试说明∠FDE=∠DEB.
解:∵DE∥BC(已知)
∴∠ADE= .( )
∵DF、BE分别平分∠ADE、∠ABC (已知)
∴∠ADF=∠ADE
∠ABE=∠ABC(角平分线定义)
∴∠ADF=∠ABE( )
∴DF∥ .( )
∴∠FDE=∠DEB.( )
【答案】∠ABC;两直线平行,同位角相等;等量代换;同位角相等, 两直线平行;两直线平行,内错角相等
【解析】试题分析:本题只需要根据平行线的性质、角平分线的性质以及平行线的判定定理就可以得出结论,然后完成填空.
试题解析:完成下面推理过程:
如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,
可推得∠FDE=∠DEB的理由:
∵DE∥BC
∴∠ADE=∠ABC.(两直线平行,同位角相等)
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF=∠ADE,
∠ABE=∠ABC
∴∠ADF=∠ABE(等量代换 )
∴DF∥BE.(同位角相等, 两直线平行)
∴∠FDE=∠DEB.(两直线平行,内错角相等)
科目:初中数学 来源: 题型:
【题目】如图,点A(a,1)、B(﹣1,b)都在函数(x<0)的图象上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】地球绕太阳公转的速度约是110 000千米/时,将110 000用科学记数法表示为( )
A. 11×104 B. 1.1×105 C. 1.1×104 D. 0.11×106
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣x+4分别交x轴、y轴于点B、点C,直线CD交x轴于点A,点D的坐标为(﹣,2),点P在线段AB上以每秒1个单位的速度从点A运动到点B,点Q在线段AB上以每秒2个单位的速度从点B运动到点A,P、Q两点同时出发,设点P的运动时间为t(秒),△DPQ的面积为S(S>0).
(1)BQ的长为 (用含t的代数式表示);
(2)求点A的坐标;
(3)求S与t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的函数解析式;
(2)将线段AB绕点B逆时针旋转90°,得到线段BC,指定位置画出线段BC.若直线BC的函数解析式为y=kx+b,则y随x的增大而 (填“增大”或“减小”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】附加题
如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作△ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC交直线GH于D.
(1)若点C恰在EF上,如图1,则∠DBA=______.
(2)将A点向左移动,其它条件不变,如图2,设∠BAD=α.
①试求∠EBC和∠PBC的大小(用α表示).
②问∠DBA的大小是否发生改变?若不变,求∠DBA的值;若变化,说明理由.
(3)若将题目条件“∠ACB=90°”,改为:“∠ACB=β”,其它条件不变,那么∠DBA= ______.(直接写出结果,不必证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com