【题目】如图,已知已知抛物线 与x轴交于点 和点 ,与y轴交于点C,且 .
(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
(4)连AC,H是抛物线上一动点,过点H作AC的平行线交x轴于点F,是否这样的点F,使得以A,C,H,F为顶点的四边形是平行四边形?若存在,直接写出满足条件的点F的坐标;若不存在,请说明理由.
【答案】
(1)
解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(-3,0),
∴OB=3,
∵OC=OB,
∴OC=3,
∴c=3,C(0,3),
将A(1,0)、B(-3,0)代入y=ax2+bx+3中,
得: ,解得: .
∴所求抛物线解析式为:y=-x2-2x+3.
(2)
解:如图1,过点E作EF⊥x轴于点F,
设E(m,-m2-2m+3)(-3<m<0),
∴EF=-m2-2m+3,BF=m+3,OF=-m,
∴S四边形BOCE= BFEF+ (OC+EF)OF
= (m+3)(-m2-2m+3)+ (-m2-2m+3+3)(-a)
=- m2- m+
=- (m+ )2+ .
∵a=- <0,
∴当m=- 时,S四边形BOCE最大,且最大值为 ,
此时点E的坐标为(- , ).
(3)
解:设点P的坐标为(-1,n),过A1作A1N⊥对称轴于N,设对称轴与x轴交于点M.
①当n>0时,∵∠NP1A1+∠MP1A=∠NA1P1+∠NP1A1=90°,
∴∠NA1P1=∠MP1A,
在△A1NP1与△P1MA中, ,
∴△A1NP1≌△P1MA(AAS),
∴A1N=P1M=n,P1N=AM=2,
∴A1(n-1,n+2),
将A1(n-1,n+2)代入y=-x2-2x+3得:n+2=-(x-1)2-2(n-1)+3,
解得:n=1,n=-2(舍去),
此时P1(-1,1);
②当n<0时,要使P2A=P2A2,由图可知A2点与B点重合,
∵∠AP2A2=90°,
∴MP2=MA=2,
∴P2(-1,-2),
∴满足条件的点P的坐标为P(-1,1)或(-1,-2).
假设存在,设点F的坐标为(t,0),
以A,C,H,F为顶点的平行四边形分两种情况(如图3):
①当点H在x轴上方时,
∵A(1,0),C(0,3),F(t,0),
∴H(t-1,3),
∵点H在抛物线y=-x2-2x+3上,
∴3=-(t-1)2-2(t-1)+3,
解得:t1=-1,t2=1(舍去),
此时F(-1,0);
②当点H在x轴下方时,
∵A(1,0),C(0,3),F(t,0),
∴H(t+1,-3),
∵点H在抛物线y=-x2-2x+3上,
∴-3=-1(t+1)2-2(t+1)+3,
解得:t3=-2- ,t4=-2+ ,
此时F(-2- ,0)或(-2+ ,0).
综上可知:存在这样的点F,使得以A,C,H,F为顶点所组成的四边形是平行四边形,点F的坐标为(-1,0)、(-2- ,0)或(-2+ ,0).
【解析】(1)由点B的坐标可知OB的长,根据OC=OB,即可得出点C的坐标以及c,再根据点A、B的坐标利用待定系数法即可求出二次函数解析式;(2)过点E作EF⊥x轴于点F,设E(m,-m2-2m+3)(-3<m<0),结合B、O、C点的坐标即可得出BF、OF、OC、EF的长,利用分割图形求面积法即可找出S四边形BOCE关于m的函数关系式,利用配方法以及二次函数的性质即可解决最值问题;(3)设点P的坐标为(-1,n),过A1作A1N⊥对称轴于N,设对称轴与x轴交于点M.分n>0和n<0考虑:①当n>0时,利用相等的边角关系即可证出△A1NP1≌△P1MA(AAS),由此即可得出点A1的坐标,将其代入二次函数解析式中即可求出n值,由此即可得出点P1的坐标;②当n<0时,结合图形找出点A2的位置,由此即可得出点P2的坐标.综上即可得出结论;(4)假设存在,设点F的坐标为(t,0),分点H在x轴上方和下方两种情况考虑,根据平行四边形的性质结合A、C、F点的坐标即可表示出点H的坐标,将其代入二次函数解析式中即可求出t值,从而得出点F的坐标.
本题考查了待定系数法求函数解析式、二次函数的性质、全等三角形的判定与性质以及平行四边形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用二次函数的性质解决最值问题;(3)分点P的纵坐标大于0和小于0两种情况考虑;(4)分点H在x轴上方和下方考虑.本题属于中档题,(3)(4)难度不小,解决该题型题目时,分类讨论是解题的关键.
【考点精析】关于本题考查的二次函数的性质和平行四边形的性质,需要了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】(1)计算:(﹣1)2018﹣8÷(﹣2)3+4×(﹣)3;
(2)先化简,再求值:3(a2b﹣2ab2)﹣(3a2b﹣2ab2),其中|a﹣1|+(b+)2=0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1 , x2 .
(1)求k的取值范围;
(2)若|x1+x2|=x1x2﹣1,求k的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利 润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y (单位:个)与
销售单价x(单位:元/个)之间的对应关系如图所示:
(1)y与x之间的函数关系是 .
(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(单位:元)与销售单价x(单位:元/个)之间的函数关系式;
(3)在(2)问的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.新年来临之际,该门市为促销制定了两种优惠方案:
方案一:买一件甲种商品就赠送一件乙种商品;
方案二:按购买金额打八折付款.
某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.
(1)分别写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;
(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张大伯从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入()元
A. 0.7b-0.6a B. 0.5b-0.2a C. 0.7b-0.6a D. 0.3b-0.2a
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题12分)如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别O(0,0),A(3, ),B(9,5 ),C(14,0).动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OAABBC运动,在OA,AB,BC上运动的速度分别为3, , (单位长度/秒)﹒当P,Q中的一点到达C点时,两点同时停止运动.
(1)求AB所在直线的函数表达式.
(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值.
(3)在P,Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com