精英家教网 > 初中数学 > 题目详情
如图,△ABC中,AE平分∠BAC交BC于E,∠C>∠E,AD⊥BC于D.
(1)若∠B=40°,∠C=80°,求∠EAD.
(2)求证:∠EAD=
12
(∠C-∠B).
分析:(1)根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求出∠BAE的度数,然后根据直角三角形两锐角互余求出∠BAD,最后根据∠EAD=∠BAD-∠BAE代入数据进行计算即可得解;
(2)根据(1)的求解方法证明即可.
解答:(1)解:∵∠B=40°,∠C=80°,
∴∠BAC=180°-∠B-∠C=180°-40°-80°=60°,
∵AE平分∠BAC交BC于E,
∴∠BAE=
1
2
∠BAC=
1
2
×60°=30°,
∵∠B=40°,AD⊥BC,
∴∠BAD=90°-∠B=90°-40°=50°,
∴∠EAD=∠BAD-∠BAE=50°-30°=20°;

(2)证明:在△ABC中,∠BAC=180°-∠B-∠C,
∵AE平分∠BAC交BC于E,
∴∠BAE=
1
2
∠BAC=
1
2
(180°-∠B-∠C)=90°-
1
2
(∠B+∠C),
∵∠B=40°,AD⊥BC,
∴∠BAD=90°-∠B,
∴∠EAD=∠BAD-∠BAE=90°-∠B-90°+
1
2
(∠B+∠C)=
1
2
(∠C-∠B).
点评:本题考查了三角形内角和定理,角平分线的定义,熟记定理并准确识图,观察出∠EAD=∠BAD-∠BAE是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案