【题目】如图,已知△ABC内接于⊙O,过点B作直线EF∥AC,又知∠ACB=∠BDC=60°,AC=cm.
(1)请探究EF与⊙O的位置关系,并说明理由;
(2)求⊙O的周长.
【答案】(1)EF与⊙O相切.理由见解析;(2)⊙O的周长为2πcm.
【解析】
(1)延长BO交AC于H,如图,先证明△ABC为等边三角形,利用点O为△ABC的外心得到BH⊥AC,由于AC∥EF,所以BH⊥EF,于是根据切线的判定定理即可得到EF为⊙O的切线;
(2)连结OA,如图,根据等边三角形的性质得∠OAH=30°,AH=CH=AC=,再在Rt△AOH中,利用三角函数和计算出OA=1,然后根据圆的周长公式计算.
(1)EF与⊙O相切.理由如下:
延长BO交AC于H,如图,
∵∠BAC=∠BDC=60°,
而∠ACB=60°,
∴△ABC为等边三角形,
∵点O为△ABC的外心,
∴BH⊥AC,
∵AC∥EF,
∴BH⊥EF,
∴EF为⊙O的切线;
(2)连结OA,如图,
∵△ABC为等边三角形,
∴OA平分∠ABC,
∴∠OAH=30°,
∵OH⊥AC,
∴AH=CH=AC=,
在Rt△AOH中,∵cos∠OAH=,
∴OA==1,
∴⊙O的周长=2π×1=2π(cm).
科目:初中数学 来源: 题型:
【题目】如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图抛物线与坐标轴分别交于点,,,点P是线段AB上方的抛物线上的一个动点.
求抛物线的解析式;
过点P作于点Q,当线段PQ的长度最大时,求点P的坐标,和PQ最大值;
过点P作x轴的垂线交线段AB于点M,再过点P作轴交抛物线于点N,请问是否存在点P使为等腰直角三角形?若存在,求点P的坐标;若不存在说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为( )
A. B. C. D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.
(1)求证:AC是⊙O的切线;
(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;
(3)若CD=1,EF=,求AF长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一个函数,如果它的自变量 x 与函数值 y 满足:当1≤x≤1 时,1≤y≤1,则称这个函数为“闭 函数”.例如:y=x,y=x 均是“闭函数”. 已知 y ax2 bx c(a0) 是“闭函数”,且抛物线经过点 A(1,1)和点 B(1,1),则 a 的取值范围是______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与、轴交于、、三点,其中,抛物线的顶点为.
(1)求的值及顶点的坐标;
(2)如图1,若动点在第一象限内的抛物线上,动点在对称轴上,当,且时,求此时点的坐标;
(3)如图2,若点是二次函数图像上对称轴右侧一点,设点到直线的距离为,到抛物线的对称轴的距离为,当时,请求出点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com