【题目】如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,D为AB边上一点.
(1)求证:△ACE≌△BCD;
(2)若AD=6,BD=8,求ED的长.
【答案】
(1)证明:∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,
∴AC=BC,EC=DC,∠B=∠CAB=45°,∠ACE=∠BCD=90°﹣∠ACD,
在△ACE和△BCD中
∴△ACE≌△BCD(SAS);
(2)解:∵△ACE≌△BCD,
∴∠CAE=∠B,AE=BD=8,
∵∠CAB=∠B=45°,
∴∠EAD=45°+45°=90°,
在Rt△EAD中,由勾股定理得:ED= = =10.
【解析】(1)根据等腰直角三角形性质求出AC=BC,EC=DC,∠B=∠CAB=45°,求出∠ACE=∠BCD=90°﹣∠ACD,根据全等三角形的判定推出即可.(2)根据全等推出∠CAE=∠B,AE=BD=8,求出∠EAD=90°,根据勾股定理求出即可.
【考点精析】关于本题考查的等腰直角三角形,需要了解等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】我区绿色和特色农产品在市场上颇具竞争力.外贸商胡经理按市场价格10元/千
克在我区收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如图)帮胡经理解决以下问题:
(1)若胡经理想将这批蘑菇存放x天后一次性出售, 则x天后这批蘑菇的销售单价为 元, 这批蘑菇的销售量是 千克;
(2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售总金额为100000元;(销售总金额=销售单价×销售量).
(3)将这批蘑菇存放多少天后一次性出售可获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知斜坡AB长为80米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.
(1)若修建的斜坡BE的坡角为45°,求平台DE的长;(结果保留根号)
(2)一座建筑物GH距离A处36米远(即AG为36米),小明在D处测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高度.(结果保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com