精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,B点坐标为(x、y),且x、y满足|x+y﹣8|+(x﹣y)2=0.
(1)求B点坐标;
(2)如图,点A为y轴正半轴上一点,过点B作BC⊥AB,交x轴正半轴于点C,求证:AB=BC.

【答案】
(1)解:∵|x+y﹣8|+(x﹣y)2=0,

解得,

即点B的坐标为(4,4)


(2)解:作BD⊥OA于点D,作BE⊥OC于点E,如右图所示,

∵BC⊥AB,∠DBE=90°,∠ADB=∠CEB=90°,

∴∠ABC=90°,

∴∠ABD+∠DBC=∠DBC+∠CBE=90°,

∴∠ABD=∠CBE,

又∵点B(4,4),

∴BD=BE=4,

∴△ADB≌△CEB(ASA),

∴AB=BC.


【解析】(1)根据x、y满足|x+y﹣8|+(x﹣y)2=0,可以求得x、y的值,从而可以求得点B的坐标;(2)根据题意,可以作辅助线,只要证明△ADB≌△CEB即可证明AB与BC的关系,根据题目中的条件可以得到△ADB≌△CEB的条件,本题得以解决.
【考点精析】掌握解二元一次方程组是解答本题的根本,需要知道二元一次方程组:①代入消元法;②加减消元法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知△ADE∽△ABC,相似比为23,则SADESABC的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1,∠2互为补角,且∠3=∠B,
(1)求证:∠AFE=∠ACB;
(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有五种说法:①﹣a表示负数;②绝对值最小的有理数是0;③3×102x2y是5次单项式;④ 是多项式.其中正确的是(
A.①③
B.②④
C.②③
D.①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请认真观察图形,解答下列问题:
(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);

(2)由(1),你能得到怎样的等量关系?请用等式表示;
(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.
证明:DE=BD+CE.

(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

(3)拓展与应用:如图(3),D,E是D,A,E三点所在直线m上的两动点(D,A, E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2PAC上的一个动点.

(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;

(2)当点P在运动过程中出现PDBC时,求此时∠PDA的度数;

(3)当点P运动到什么位置时,以DPBQ为顶点的平行四边形的顶点Q恰好在边BC上?求出此时□DPBQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答
(1)计算:2(x+y)(x﹣y)﹣(x+y)2
(2)解方程:
(3)先化简,再求值:v,在0,1,2三个数中选一个合适的数并代入求值.

查看答案和解析>>

同步练习册答案