精英家教网 > 初中数学 > 题目详情
4.(1)已知圆锥的底面半径为2cm,母线长为4cm,求圆锥的表面积;
(2)用圆心角为90°,半径为6cm的扇形做成一个无底的圆锥侧面,求圆锥的侧面积;
(3)如图,圆锥的侧面积为15π,底面半径为3,求圆锥的高.

分析 (1)先利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算出侧面积,然后加上底面积即可得到圆锥的表面积;
(2)利用圆锥的侧面展开图为一扇形,所以扇形面积公式计算即可得到圆锥的侧面积;
(3)设圆锥的母线长为R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得$\frac{1}{2}$•2π•3•R=15π,解得R=5,然后利用勾股定理计算圆锥的高.

解答 解:(1)圆锥的表面积=π•22+$\frac{1}{2}$•2π•2•4=12π(cm2);
(2)圆锥的侧面积=$\frac{90•π•{6}^{2}}{360}$=9π(cm2);
(3)设圆锥的母线长为R,
根据题意得$\frac{1}{2}$•2π•3•R=15π,解得R=5,
所以圆锥的高=$\sqrt{{5}^{2}-{3}^{2}}$=4.

点评 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图把一个转盘分成四等分依次标上数字1、2、3、4,若连续自由转动转盘两次,指针指向的数字分别记得a、b,作为点的横、纵坐标,
①求点(a,b)的个数(用列表法);
②求点A(a,b)在函数y=x的图象上(即a与b相等)的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知二次函数的图象经过A(-1,10),B(1,4),C(2,7)三点.回答下列问题:
(1)自变量x在什么范围内变化时,因变量随自变量的增大而减小?
(2)函数有最大值,还是有最小值?自变量x取什么值时,因变量y取得这个最大值或最小值?最大值或最小值是多少?
(3)这个图象经过怎样的平移运动,就能得到以原点为顶点的一条抛物线?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.高速公路路基的横断面为梯形,高为4m,上底宽为16m,路基两边斜坡的坡度分别为i=1:1和i′=1:2,求路基下底宽.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.直角三角形一边长为12,另两边的长度是方程x2-18x+a=0的两根,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$是二元一次方程kx+2y=4的一组解,则k的值是1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知∠ABC=30°,边BC上有一点O,BO=2,⊙O的半径r为多少时,⊙O与AB相交、相切、相离?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.举出两个在现实生活中体现中心对称图形的例子.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.己知数轴上顺次有A,B,C三点,分别表示数a,b,c,并且满足(a+24)2+|b+10|=0,b与c互为相反数,两只电子小蜗牛甲、乙分别从A,C两点同时相向而行,甲的速度为2个单位/秒,乙的速度为6个单位/秒.
(])求A,B,C三点分别表示的数;
(2)运动多少秒时,甲,乙到B的距离相等;
(3)设点P在数轴上,表示的数为-21,若甲运动到点P时立即掉头返回,问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.

查看答案和解析>>

同步练习册答案