【题目】在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是( )
A. B. C. D.
【答案】D
【解析】在本题中,由一次函数y=ax+b图象的倾斜方向判断a的符号,由该一次函数图象与y轴的交点位置判断b的符号;由二次函数y=ax2﹣b图象的开口方向判断a的符号,由该二次函数图象与y轴的交点位置(本题中该交点为抛物线顶点)判断(-b)的符号,进而得到b的符号. 由不同函数图象得到的a与b的符号一致的选项为正确选项. 下面为判断过程(以a或b与0的大小关系表示其符号).
A选项:由一次函数图象知,a<0,b<0;由二次函数图象知,a>0,b>0,故A选项错误;
B选项:由一次函数图象知,a>0,b>0;由二次函数图象知,a<0,b<0,故B选项错误;
C选项:由一次函数图象知,a<0,b>0;由二次函数图象知,a>0,b>0,故C选项错误;
D选项:由一次函数图象知,a>0,b>0;由二次函数图象知,a>0,b>0,故D选项正确.
故本题应选D.
科目:初中数学 来源: 题型:
【题目】(1)问题背景
如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重合),求证: PA=PB+PC.
小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:
第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);
第二步:证明Q,B,P三点共线,进而原题得证.
请你根据小明同学的思考过程完成证明过程.
(2)类比迁移
如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.
(3)拓展延伸
如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,则OC的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题发现:
()如图①,中,,,,点是边上任意一点,则的最小值为__________.
()如图②,矩形中,,,点、点分别在、上,求的最小值.
()如图③,矩形中,,,点是边上一点,且,点是边上的任意一点,把沿翻折,点的对应点为点,连接、,四边形的面积是否存在最小值,若存在,求这个最小值及此时的长度;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK的顶点均为小正方形的顶点.
(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD位似,且位似比为2:1;
(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法不正确的是 ( )
A. 两个单项式的积仍是单项式;
B. 两个单项式的积的次数等于它们的次数之和;
C. 单项式乘以多项式,积的项数与多项式项数相同;
D. 多项式乘以多项式,合并同类项前,积的项数等于两个多项式的项数之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.
数量x(千克) | 1 | 2 | 3 | 4 | 5 |
售价y(元) | 3+0.1 | 6+0.2 | 9+0.3 | 12+0.4 | 15+0.5 |
则当卖出苹果数量为10千克时,售价y为_______元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com