精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙OABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BDCD,过点DBC的平行线,与AB的延长线相交于点P

1)求证:PD是⊙O的切线;

2)若AB3AC4,求线段PB的长.

【答案】1)见解析;(2PB.

【解析】

1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到ODPD垂直,即可得证;

2)由PDBC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似;由三角形ABC为直角三角形,利用勾股定理求出BC的长,再由OD垂直平分BC,得到DBDC,相似三角形的性质,得比例,求出所求即可.

1)证明:∵圆心OBC上,

BC是圆O的直径,

∴∠BAC90°,

连接OD

AD平分∠BAC

∴∠BAC2DAC

∵∠DOC2DAC

∴∠DOC=∠BAC90°,即ODBC

PDBC

ODPD

OD为圆O的半径,

PD是圆O的切线;

2)∵PDBC

∴∠P=∠ABC

∵∠ABC=∠ADC

∴∠P=∠ADC

∵∠PBD+ABD180°,∠ACD+ABD180°,

∴∠PBD=∠ACD

∴△PBD∽△DCA

∵△ABC为直角三角形,

BC2AB2+AC232+4225

BC5

OD垂直平分BC

DBDC

BC为圆O的直径,

∴∠BDC90°,

RtDBC中,DB2+DC2BC2,即2DC2BC225

DCDB

∵△PBD∽△DCA

PB

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,边长为2的正方形ABCD的顶点AB在一个半径为2的圆上, 顶点CD在圆内,将正方形ABCD沿圆的内壁作无滑动的滚动当滚动一周回到原位置时,点C运动的路径长为__ _

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰△ABC中,ABBC,以AB为直径的半圆分别交ACBC于点DE两点,BF⊙O相切于点B,交AC的延长线于点F

1)求证:DAC的中点;

2)若AB12sinCAE,求CF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 抛物线轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①;②;③对于任意实数m,总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为  

A. 1 个 B. 2 个 C. 3 个 D. 4 个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数ya0a为常数)和y在第一象限内的图象如图所示,点My的图象上,MCx轴于点C,交y的图象于点AMDy轴于点D,交y的图象于点B,当点My的图象上运动时,以下结论:①SODBSOCA;②四边形OAMB的面积不变;③当点AMC的中点时,则点BMD的中点.其中正确结论是(  )

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:

在综合与实践课上,老师让同学们以矩形纸片的剪拼为主题开展数学活动.如图1,将矩形纸片沿对角线剪开,得到.并且量得.

操作发现:

(1)将图1中的以点为旋转中心,按逆时针方向旋转,使,得到如图2所示的,过点的平行线,与的延长线交于点,则四边形的形状是________.

(2)创新小组将图1中的以点为旋转中心,按逆时针方向旋转,使三点在同一条直线上,得到如图3所示的,连接,取的中点,连接并延长至点,使,连接,得到四边形,发现它是正方形,请你证明这个结论.

实践探究:

(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将沿着方向平移,使点与点重合,此时点平移至点,相交于点,如图4所示,连接,试求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为10,点EF分别为BCAB边的中点.连接AEDF,两线交于点H,连接BH并延长,交边AD于点G.下列结论:①△ABE≌△DAF,②cosBAE=,③S四边形CDHE=111,④AG=其中正确的是(

A.①③④B.①②③

C.①④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在四边形ABCD中,ADBC,∠ABC90°,以AB为直径的O交边DCEF两点,AD1BC5,设O的半径长为r

1)联结OF,当OFBC时,求O的半径长;

2)过点OOHEF,垂足为点H,设OHy,试用r的代数式表示y

3)设点GDC的中点,联结OGOD,△ODG是否能成为等腰三角形?如果能,试求出r的值;如不能,试说明理由.

查看答案和解析>>

同步练习册答案