精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠A=80°,点P为⊙O上任意一点(不与E、F重合),则∠EPF=

【答案】50°或130°
【解析】解:有两种情况: ①当P在弧EDF上时,∠EPF=∠ENF,
连接OE、OF,
∵圆O是△ABC的内切圆,
∴OE⊥AB,OF⊥AC,
∴∠AEO=∠AFO=90°,
∵∠A=80°,
∴∠EOF=360°﹣∠AEO﹣∠AFO﹣∠A=100°,
∴∠ENF=∠EPF= ∠EOF=50°,
②当P在弧EMF上时,∠EPF=∠EMF,
∠FPE=∠FME=180°﹣50°=130°,
所以答案是:50°或130°.

【考点精析】本题主要考查了垂线的性质和多边形内角与外角的相关知识点,需要掌握垂线的性质:1、过一点有且只有一条直线与己知直线垂直.2、垂线段最短;多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.
(1)求BD的长;
(2)若△DCN的面积为2,求四边形ABNM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值,

12x2y[3xy2+2xy2+2x2y],其中x=y=2

2)已知a+b=4ab=﹣2,求代数式(4a﹣3b﹣2aba﹣6b﹣ab)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:2S四边形EFGH=S矩形ABCD(S表示面积)

实验探究:某数学实验小组发现:若图1AH≠BF,点GCD上移动时,上述结论会发生变化,分别过点E、GBC边的平行线,再分别过点F、HAB边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1

如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH=S矩形ABCD+

如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S矩形ABCD之间的数量关系,并说明理由.

迁移应用:

请直接应用实验探究中发现的结论解答下列问题:

如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S四边形EFGH=11,HF=,求EG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,点DE分别在ABAC上,CEBC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF. EFCD,求证:∠BDC90°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,DE∥BC,AD2=AEAC.求证:
(1)△BCD∽△CDE;
(2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,Bx轴上,四边形OACB为平行四边形,且

AOB=60°,反比例函数k>0)在第一象限内过点A,且与BC交于点F。FBC的中点,且SAOF=12 时,OA的长为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知点A(﹣2,0),点B(0,﹣4),AD与y轴交于点E,且E为AD的中点,双曲线y= 经过C,D两点且D(a,8)、C(4,b).

(1)求a、b、k的值;

(2)如图2,点P在双曲线y= 上,点Q在x轴上,若以A、B、P、Q为顶点的四边形为平行四边形,试直接写出满足要求的所有点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是( )

A.( ,1)
B.(1,﹣
C.(2 ,﹣2)
D.(2,﹣2

查看答案和解析>>

同步练习册答案