精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,O为坐标原点,Bx轴上,四边形OACB为平行四边形,且

AOB=60°,反比例函数k>0)在第一象限内过点A,且与BC交于点F。FBC的中点,且SAOF=12 时,OA的长为____.

【答案】8

【解析】分析:

过点AAH⊥OB于点H,过点FFM⊥OB于点M,设OA=x,在由已知易得:AH=,OH=,由此可得SAOH= 由点F是平行四边形AOBCBC边上的中点,可得BF=,BM=,FM=,由此可得SBMF=,由SOAF=可得SOBF=,由此可得SOMF=由点A、F都在反比例函数的图象上可得SAOH=SBMF由此即可列出关于x的方程,解方程即可求得OA的值.

详解:

如下图AAH⊥OB于点H,过点FFM⊥OB于点M,设OA=x,

四边形AOBC是平行四边形,∠AOB=60°,点FBC的中点,SOAF=

∴AH=,OH=,BF=,∠FBM=60°,SOBF=

∴SAOH=,BM=,FM=

∴SBMF=

∴SOMF=

由点A、F都在反比例函数的图象上

∴SAOH=SBMF

=

化简得:解得(不合题意,舍去),

∴OA=8.

故答案为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知第一象限内的点A在反比例函数y= 的图象上,第二象限内的点B在反比例函数y= 的图象上,且OA⊥OB,cosA= ,则k的值为( )

A.﹣3
B.﹣4
C.﹣
D.﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD中,ADBC,AD=CD,E是对角线BD上一点,且EA=EC.

(1)求证:四边形ABCD是菱形;

(2)如果BE=BC,且CBE:BCE=2:3,求证:四边形ABCD是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠A=80°,点P为⊙O上任意一点(不与E、F重合),则∠EPF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9分)探究题:如图:

(1)ABC为等边三角形,动点D在边CA上,动点P边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连接AP,BD交于点Q,两点运动过程中AP=BD成立吗?请证明你的结论;

(2)如果把原题中“动点D在边CA上,动点P边BC上,”改为“动点D,P在射线CA和射线BC上运动”,其他条

件不变,如图(2)所示,两点运动过程中BQP的大小保持不变.请你利用图(2)的情形,

求证:BQP=60°;

(3)如果把原题中“动点P在边BC上”改为“动点P在AB的延长线上运动,连接PD交BC于E”,其他条件不变,如图(3),则动点D,P在运动过程中,DE始终等于PE吗?写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=﹣ x2+bx+c与x轴交于A,B两点,其中B(6,0),与y轴交于点C(0,8),点P是x轴上方的抛物线上一动点(不与点C重合).

(1)求抛物线的表达式;
(2)过点P作PD⊥x轴于点D,交直线BC于点E,点E关于直线PC的对称点为E′,若点E′落在y轴上(不与点C重合),请判断以P,C,E,E′为顶点的四边形的形状,并说明理由;
(3)在(2)的条件下直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某村计划对总长为1800m的道路进行改造,安排甲、乙两个工程队完成.已知甲队每天能完成的道路长度是乙队每天能完成的2倍,并且在独立完成长为400m的道路时,甲队比乙队少用4天.

(1)求甲、乙两工程队每天能完成道路的长度分别是多少m?

(2)若村委每天需付给甲队的道路改造费用为0.4万元,乙队为0.25万元,要使这次的道路改造费用不超过8万元,至少应安排甲队工作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】摩拜单车公司调查无锡市民对其产品的了解情况,随机抽取部分市民进行问卷,结果分非常了解比较了解一般了解不了解四种类型,分别记为.根据调查结果绘制了如下尚不完整的统计图.

1)本次问卷共随机调查了 名市民,扇形统计图中 .

2)请根据数据信息补全条形统计图.

3扇形统计图中“D类型所对应的圆心角的度数是 .

4从这次接受调查的市民中随机抽查一个,恰好是不了解的概率是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列一组勾股数:

1

3=2×1+1

4=2×1×(1+1)

5=2×1×(1+1)+1

2

5=2×2+1

12=2×2×(2+1)

13=2×2×(2+1)+1

3

7=2×3+1

24=2×3×(3+1)

25=2×3×(3+1)+1

4

9=2×4+1

40=2×4×(4+1)

41=2×4×(4+1)+1

观察以上各组勾股数的特点:

(1)请写出第7组勾股数

(2)写出第组勾股数.

查看答案和解析>>

同步练习册答案