精英家教网 > 初中数学 > 题目详情

【题目】如图,已知第一象限内的点A在反比例函数y= 的图象上,第二象限内的点B在反比例函数y= 的图象上,且OA⊥OB,cosA= ,则k的值为( )

A.﹣3
B.﹣4
C.﹣
D.﹣2

【答案】B
【解析】解:过A作AE⊥x轴,过B作BF⊥x轴,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOF+∠EOA=90°,
∵∠BOF+∠FBO=90°,
∴∠EOA=∠FBO,
∵∠BFO=∠OEA=90°,
∴△BFO∽△OEA,
在Rt△AOB中,cos∠BAO= =
设AB= ,则OA=1,根据勾股定理得:BO=
∴OB:OA= :1,
∴SBFO:SOEA=2:1,
∵A在反比例函数y= 上,
∴SOEA=1,
∴SBFO=2,
则k=﹣4.
故选:B.

过A作AE⊥x轴,过B作BF⊥x轴,由OA与OB垂直,再利用邻补角定义得到一对角互余,再由直角三角形BOF中的两锐角互余,利用同角的余角相等得到一对角相等,又一对直角相等,利用两对对应角相等的三角形相似得到三角形BOF与三角形OEA相似,在直角三角形AOB中,由锐角三角函数定义,根据cos∠BAO的值,设出AB与OA,利用勾股定理表示出OB,求出OB与OA的比值,即为相似比,根据面积之比等于相似比的平方,求出两三角形面积之比,由A在反比例函数y= 上,利用反比例函数比例系数的几何意义求出三角形AOE的面积,进而确定出BOF的面积,再利用k的集合意义即可求出k的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AEAB;⑤CB∥GD,其中正确的结论是(
A.①③⑤
B.②④⑤
C.①②⑤
D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,3),△AOB绕点O逆时针旋转90°后得到△A1OB1

(1)点A关于点O中心对称的点P的坐标为
(2)在网格内画出△A1OB1
(3)点A1、B1的坐标分别为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.
(1)求BD的长;
(2)若△DCN的面积为2,求四边形ABNM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,ADCBDE均为等腰三角形,∠CAD=DBE,AC=AD,BD=BE,连接CE,点GCE的中点,过点EAC的平行线与线段AG延长线交于点F.

(1)当A,D,B三点在同一直线上时(如图1),求证:GAF的中点;

(2)将图1BDE绕点D旋转到图2位置时,点A,D,G,F在同一直线上,点H在线段AF的延长线上,且EF=EH,连接AB,BH,试判断ABH的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知 m≥2,n≥2,且 m、n 均为正整数,如果将 mn 进行如图所示的分解,那么下列四个叙述中正确的有(

①在 25 分解结果是 1517两个数

②在 42 分解结果中最大的数是9.

③若 m3 分解结果中最小的数是 23,则 m=5.

④若 3n 分解结果中最小的数是 79,则 n=5.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°EF⊥AB,垂足为F,连接DF

1)试说明AC=EF

2)求证:四边形ADFE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值,

12x2y[3xy2+2xy2+2x2y],其中x=y=2

2)已知a+b=4ab=﹣2,求代数式(4a﹣3b﹣2aba﹣6b﹣ab)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,Bx轴上,四边形OACB为平行四边形,且

AOB=60°,反比例函数k>0)在第一象限内过点A,且与BC交于点F。FBC的中点,且SAOF=12 时,OA的长为____.

查看答案和解析>>

同步练习册答案