精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,3),△AOB绕点O逆时针旋转90°后得到△A1OB1

(1)点A关于点O中心对称的点P的坐标为
(2)在网格内画出△A1OB1
(3)点A1、B1的坐标分别为

【答案】
(1)(﹣3,﹣2)
(2)

解:如图,△A1OB1即为所求


(3)(﹣2,3),(﹣3,1)
【解析】解:(1)∵A(3,2),
∴P(﹣3,﹣2).
所以答案是:(﹣3,﹣2);
(3)由图可知,A1(﹣2,3),B1(﹣3,1).
所以答案是:(﹣2,3),(﹣3,1).
【考点精析】掌握图形的旋转和旋转的性质是解答本题的根本,需要知道每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的 后得到线段CD,则点B的对应点D的坐标为(
A.(3,3)
B.(1,4)
C.(3,1)
D.(4,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.

(1)求前4个台阶上数的和是多少?

(2)求第5个台阶上的数是多少?

(3)从下到上前多少个台阶上数的和为30.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
(1)求抛物线的解析式;
(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;
(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要估做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有(
A.0种
B.1种
C.2种
D.3种

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为三角形数,而把1,4,9,16…这样的数称为正方形数.从图中可以发现,任何一个大于1正方形数都可以看作两个相邻三角形数之和.下列等式中,符合这一规律的是(  )

A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察下列图形与等式的关系,并填空:

(2)利用(1)中结论,解决下列问题

①1+3+5+…+203=   

计算:101+103+105+…+199;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知第一象限内的点A在反比例函数y= 的图象上,第二象限内的点B在反比例函数y= 的图象上,且OA⊥OB,cosA= ,则k的值为( )

A.﹣3
B.﹣4
C.﹣
D.﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD中,ADBC,AD=CD,E是对角线BD上一点,且EA=EC.

(1)求证:四边形ABCD是菱形;

(2)如果BE=BC,且CBE:BCE=2:3,求证:四边形ABCD是正方形.

查看答案和解析>>

同步练习册答案