【题目】(问题背景)
(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;
(简单应用)
(2)如图2, AP、CP分别平分∠BAD. ∠BCD,若∠ABC=46°,∠ADC=26°,求∠P的度数;
(问题探究)
(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.
(拓展延伸)
(4) ①在图4中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为: (用α、β表示∠P);
②在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE, 猜想∠P与∠B、∠D的关系,直接写出结论.
【答案】(1)见解析;(2)36°;(3)26°,理由见解析;(4)①∠P=②∠P=
【解析】
(1)根据三角形内角和定理即可证明;
(2)直接利用(1)中的结论两次,两式相加,然后根据角平分线的性质求解即可;
(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°﹣∠2,∠PCD=180°﹣∠3,由∠P+(180°﹣∠1)=∠D+(180°﹣∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题.
(4)①同法利用(1)种的结论列出方程即可解决问题.
②同法利用(1)种的结论列出方程即可解决问题.
(1)在△AEB中,∠A+∠B+∠AEB=180°.
在△CED中,∠C+∠D+∠CED=180°.
∵∠AEB=∠CED,
∴∠A+∠B=∠C+∠D;
(2)由(1)得:∠1+∠B=∠3+∠P,∠4+∠D=∠2+∠P,
∴∠1+∠B+∠4+∠D =∠3+∠P+∠2+∠P.
∵∠1=∠2,∠3=∠4,
∴2∠P=∠B+∠D=46°+26°=72°,
∴∠P=36°.
(3)∠P=26°,理由是:如图3:
∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∴∠PAD=180°﹣∠2,∠PCD=180°﹣∠3.
∵∠PAB=∠1,∠P+∠PAB =∠B+∠4,
∴∠P+∠1=∠B+∠4.
∵∠P+(180°﹣∠2)=∠D+(180°﹣∠3),
∴2∠P=∠B+∠D,
∴∠P=(∠B+∠D)=×(36°+16°)=26°.
(4)①设∠CAP=m,∠CDP=n,则∠CAB=3m,,∠CDB=3n,
∴∠PAB=2m,∠PDB=2n.
∵∠C+∠CAP=∠P+∠PDC,∠P+∠PAB=∠B+∠PDB,
∵∠C=α,∠B=β,
∴α+m=∠P+n,∠P+2m=β+2n,
∴α-∠P = n-m,∠P-β=2n-2m=2(n-m),
∴2α+β=3∠P
∴∠P=.
故答案为:∠P=.
②设∠BAP=x,∠PCE=y,则∠PAO=x,∠PCB=y.
∵∠PAO+∠P=∠PCD+∠D,∠B+∠BAO=∠OCD+∠D,
∴x+∠P=180°-y+∠D,∠B+2x=180°-2y+∠D,
∴∠P=.
故答案为:∠P=.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=a(x﹣h)2+k(a,h,k为常数)在坐标平面上的图象通过(0,5)、(15,8)两点.若a<0,0<h<10,则h之值可能为下列何值?( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小刚从点 出发,沿着坡度为 的斜坡向上走了650米到达点 ,且 .
(1)则他上升的高度是 米 ;
(2)然后又沿着坡度为 的斜坡向上走了1000米达到点 .问小刚从 点到 点上升的高度 是多少米(结果保留根号)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系 中,矩形 的边 在 轴上,顶点 在抛物线 上,且抛物线交 轴于另一点 .
(1)则 = , =;
(2)已知 为 边上一个动点(不与 、 重合),连结 交 于点 ,过点 作 轴的平行线分别交抛物线、直线 于 、 .
①求线段 的最大值,此时 的面积为;
②若以点 为圆心, 为半径作⊙O,试判断直线 与⊙O的能否相切,若能请求出 点坐标,若不能请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2= (x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则 = .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,EF∥AD,∠1=∠2.证明:∠DGA+∠BAC=180°.请完成说明过程.
解:∵EF∥AD,(已知)
∴∠2=∠3.( )
又∵∠1=∠2(已知)
∴∠1=∠3,(等量代换)
∴AB∥ ,( )
∴∠DGA+∠BAC=180°.( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAC 的角平分线与 BC 的垂直平分线交于点 D,DE⊥AB, DF⊥AC,垂足分别为 E,F.若 AB=10,AC=8,求 BE 长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.
你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:
①,又,
,∴能确定59319的立方根是个两位数.
②∵59319的个位数是9,又,∴能确定59319的立方根的个位数是9.
③如果划去59319后面的三位319得到数59,
而,则,可得,
由此能确定59319的立方根的十位数是3
因此59319的立方根是39.
(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.
①它的立方根是_______位数.
②它的立方根的个位数是_______.
③它的立方根的十位数是__________.
④195112的立方根是________.
(2)请直接填写结果:
①________.
②________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列条件中,不能判断△ABC是直角三角形的是( )
A. a:b:c=3:4:5 B. ∠A:∠B:∠C=3:4:5
C. ∠A+∠B=∠C D. a:b:c=1:2:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com