【题目】如图,∠BAC 的角平分线与 BC 的垂直平分线交于点 D,DE⊥AB, DF⊥AC,垂足分别为 E,F.若 AB=10,AC=8,求 BE 长.
科目:初中数学 来源: 题型:
【题目】雾霾天气严重影响市民的生活质量.在去年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.
组别 | 雾霾天气的主要成因 | 百分比 |
A | 工业污染 | 45% |
B | 汽车尾气排放 | m |
C | 炉烟气排放 | 15% |
D | 其他(滥砍滥伐等) | n |
(1)本次被调查的市民共有多少人?
(2)求m、n的值,并计算图2中区域B所对应的扇形圆心角的度数;
(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知A(a,0),B(b,0),C(﹣1,2),且.
(1)求a,b的值;
(2)y轴上是否存在一点M,使△COM的面积是△ABC的面积的一半,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题背景)
(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;
(简单应用)
(2)如图2, AP、CP分别平分∠BAD. ∠BCD,若∠ABC=46°,∠ADC=26°,求∠P的度数;
(问题探究)
(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.
(拓展延伸)
(4) ①在图4中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为: (用α、β表示∠P);
②在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE, 猜想∠P与∠B、∠D的关系,直接写出结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的面积为8cm2 , AP垂直∠B的平分线BP于P,则△PBC的面积为( )
A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知三角形ABC在平面直角坐标系中的位置如图所示.将三角形ABC向右平移6个单位长度,再向下平移6个单位长度得到三角形A1B1C1.(图中每个小方格边长均为1个单位长度) .
(1)在图中画出平移后的三角形A1B1C1;
(2)求三角形ABC的面积;
(3)直接写出三角形A1B1C1各顶点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数 (a,b,c为常数,且 )中的 与 的部分对应值如表:
… | -1 | 0 | 1 | 3 | … | |
… | -1 | 3 | 5 | 3 | … |
下列结论:
① ;
②当 时,y的值随x值的增大而减小;
③3是方程 的一个根;
④当 时, .
其中正确的个数为( )
A.4个
B.3个
C.2个
D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.
(1)该顾客至少可得到元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校“百变魔方”社团准备购买两种魔方.已知购买个种魔方和个种魔方共需元;购买个种魔方所需款数和购买个种魔方所需款数相同.优惠活动:活动一:“疯狂打折”:种魔方八折,种魔方四折;活动二:“买一送一”:购买一个种魔方送一个种魔方
(1)求这两种魔方的单价;
(2)结合社员们的需求,社团决定购买两种魔方共个(其中种魔方不超过个) .某商店有两种优惠活动,如图所示.设购买种魔方个,按活动一购买所需费用为元,按活动二购买所需费用为元.请根据以上信息,解决以下问题:
①试用含的代数式分别表示.
②试求当购买种魔方多少个时,选择两种优惠活动同样实惠?
③以种魔方的个数说明选择哪种优惠活动购买魔方更实惠.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com