【题目】如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F=30°,DE=1,则EF的长是_____.
【答案】2
【解析】
连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE=EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.
解:如图:连接BE
∵AB的垂直平分线DE交BC的延长线于F,
∴AE=BE,∠A+∠AED=90°,
∵在Rt△ABC中,∠ACB=90°,
∴∠F+∠CEF=90°,
∵∠AED=∠FEC,
∴∠A=∠F=30°,
∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,
∴∠CBE=∠ABC﹣∠ABE=30°,
∴∠CBE=∠F,
∴BE=EF,
在Rt△BED中,BE=2DE=2×1=2,
∴EF=2.
故答案为:2.
科目:初中数学 来源: 题型:
【题目】(题文)用一条长为18cm细绳围成一个等腰三角形.
(1)如果腰长是底边的2倍,那么各边的长是多少?
(2)能围成有一边的长为4cm的等腰三角形吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某装修公司要粉刷楼的外墙,需要测量楼CD的高度.已知在楼的外墙上从楼顶C处悬挂一广告屏,其高CE为2米,测量员用高为1.7米的测量器,在A处测得屏幕底端E的仰角为35°,然后他正对大楼方向前进6米,在B处测得屏幕顶端C的仰角为45°.请根据测量数据,求楼CD的高度(参考数据:sin35°≈,cos35°≈,tan35°≈,结果精确到0.l米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为米的篱笆围成.已知墙长为米(如图),设这个苗圃园垂直于墙的一边长为米.
若苗圃园的面积为平方米,求;
若平行于墙的一边长不小于米,这个苗圃园的面积有最大值吗?如果有,求出最大值;如果没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是的小数部分,又例如:∵22<()2<32,即2<<3,∴的整数部分为2,小数部分为(﹣2).
请解答:
(1)的整数部分是 ,小数部分是 .
(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.
(3)已知x是3+的整数部分,y是其小数部分,直接写出x﹣y的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某市近郊有一块长为60米,宽为50米的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为a米)区域将铺设塑胶地面作为运动场地.设通道的宽度为x米.
(1)a= (用含x的代数式表示);
(2)若塑胶运动场地总占地面积为 2430平方米,则通道的宽度为多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com