精英家教网 > 初中数学 > 题目详情

【题目】已知正方形,点为射线上的一点(不和点重合),过,且,过交射线.若的面积与四边形的面积之比为,则________

【答案】

【解析】

EM⊥BA的延长线于点M,延长EFBC的延长线于点G,易证△PEM≌△PBC,四边形CDEF为平行四边形,则ME=BP=FG=AB+AP,AP=CG.设AB=BC=1,AP=CG=x,用含x的代数式分别表示SEFC,S四边形PEFC,根据△EFC与四边形PEFC的面积之比为 3:20,列出关于x的方程,解方程求出x的值,然后根据正切函数的定义即可求出tan∠BPC的值.

EMBA的延长线于点M,延长EFBC的延长线于点G,

PEPC,

∴∠MPE+∠BPC=90°,

∵∠MPE+∠MEP=90°,

∴∠MEP=BPC,

RtPBCRtEMP

RtPBCRtEMP(AAS)

PM=BC,ME=PB;

PM=AB,

PM+PA=AB+PA,

MA=ME,

MA=ME,AMEM,

∴∠MAE=45°,

PBEF,

∴四边形ABFE是平行四边形,

AB=EF,

CD=EF,

∴四边形EFCD是平行四边形,

ME=BP=FG=AB+AP,AP=CG,

AB=BC=1,AP=CG=x,则

S四边形PEFC=S矩形BMEG﹣2S三角形BPC﹣S三角形FCG=(2+x)(1+x)﹣(1+x)﹣(1+x)x= x2+x+1,

SEFC=x;

∵△EFC与四边形PEFC的面积之比为

x:(x2+x+1)=3:20,

解得x=3

tanBPC=

∴当x=3时,tanBPC=

x=时,tanBPC=

tanBPC=

故答案是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,点的坐标是,点的纵坐标是,则两点的坐标分别是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AB 两点分别位于一个池塘的两端,小明想用绳子测量AB 间的距离,但绳子不够长,请你利用三角形全等的相关知识帮他设计一种方案测量出AB间的距离,写出具体的方案,并解释其中的道理,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一条直线过点,且与抛物线交于两点,其中点的横坐标是

求这条直线的函数关系式及点的坐标.

轴上是否存在点,使得是直角三角形?若存在,求出点的坐标,若不存在,请说明理由.

过线段上一点,作轴,交抛物线于点,点在第一象限,点,当点的横坐标为何值时,的长度最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,AB的垂直平分线DEBC的延长线于F,若∠F30°,DE1,则EF的长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH3.4m.当起重臂AC长度为9m,张角∠HAC118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出(

A.直角三角形的面积

B.最大正方形的面积

C.较小两个正方形重叠部分的面积

D.最大正方形与直角三角形的面积和

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点CEFB在同一直线上,点ADBC异侧,ABCDAEDFAD

1)求证:AB=CD

2)若ABCFB40°,求D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是ABF,CDE的内心,则O1O2=_____

查看答案和解析>>

同步练习册答案