【题目】如图,已知一条直线过点,且与抛物线交于,两点,其中点的横坐标是.
求这条直线的函数关系式及点的坐标.
在轴上是否存在点,使得是直角三角形?若存在,求出点的坐标,若不存在,请说明理由.
过线段上一点,作轴,交抛物线于点,点在第一象限,点,当点的横坐标为何值时,的长度最大?最大值是多少?
【答案】(1) 直线,B(8,16);(2)存在,或,理由见解析;(3)当的横坐标为时,的长度的最大值是
【解析】
(1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;
(2)如图1,过点B作BG∥x轴,过点A作AG∥y轴,交点为G,然后分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;
(3)设M(a,a2),如图2,设MP与y轴交于点Q,首先在Rt△MQN中,由勾股定理得MN=a2+1,然后根据点P与点M纵坐标相同得到x=,从而得到MN+3PM=-a2+3a+9,确定二次函数的最值即可.
解:∵点是直线与抛物线的交点,且横坐标为,
∴,点的坐标为,
设直线的函数关系式为,
将,代入得,
解得,
∴直线,
∵直线与抛物线相交,
∴,
解得:或,
当时,,
∴点的坐标为;
如图,过点作轴,过点作轴,交点为,
∴,
∵由,可求得.
设点,同理可得,
,
①若,则,即,
解得:;
②若,则,即,
解得:或;
③若,则,即,
解得:;
∴点的坐标为,,,设,如图,设与轴交于点,
在中,由勾股定理得,
又∵点与点纵坐标相同,
∴,
∴,
∴点的纵坐标为,
∴,
∴,
∴当,
又∵,
∴取到最小值,
∴当的横坐标为时,的长度的最大值是.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=30°,点A、A、A、A…在射线ON上,点B、B、B…在射线OM上,△ABA、△ABA、△ABA…均为等边三角形,若OA=1,则△ABA的边长为( )
A.64B.32C.16D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若,是一元二次方程的两根,则有,,由上式可知,一元二次方程的两根和、两根积是由方程的系数确定的,我们把这个关系称为一元二次方程根与系数的关系.若,是方程的两根,记,,…,,
________;________;________;________;(直接写出结果)
当为不小于的整数时,由猜想,,有何关系?
利用中猜想求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是AOB内任意一点,OP=10cm,点P与点关于射线OA对称,点P与点关于射线OB对称,连接交OA于点C,交OB于点D,当△PCD的周长是10cm时,∠AOB的度数是______度。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某旅行社为吸引市民组团去天水湾风景区旅游,推出如下收费标准:
如果人数不超过人,人均旅游费用为元;
如果人数超过人,每增加人,人均旅游费用降低元,但人均旅游费用不得低于元.
某单位共付给该旅行社旅游费用元,问:该单位这次共有多少员工去天水湾风景区旅游?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com