精英家教网 > 初中数学 > 题目详情

【题目】某旅行社为吸引市民组团去天水湾风景区旅游,推出如下收费标准:

如果人数不超过人,人均旅游费用为元;

如果人数超过人,每增加人,人均旅游费用降低元,但人均旅游费用不得低于元.

某单位共付给该旅行社旅游费用元,问:该单位这次共有多少员工去天水湾风景区旅游?

【答案】该单位这次共有名员工去天水湾风景区旅游.

【解析】

根据题意首先分析这次旅游人数,因为付给该旅行社旅游费用27000元,当旅游人数是25人时,1000×25=25000,低于27000,可得出实际人数超过了25人,再表示出每人应交钱数1000-20(x-25),结合实际问题列出方程即可.

∴去的人一定超过人,

设该单位这次共有名员工去西湖风景区旅游,

解之得:

时,人均费用为元.

时,人均费用为元,因为低于元,这种情况舍去.

所以

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知一条直线过点,且与抛物线交于两点,其中点的横坐标是

求这条直线的函数关系式及点的坐标.

轴上是否存在点,使得是直角三角形?若存在,求出点的坐标,若不存在,请说明理由.

过线段上一点,作轴,交抛物线于点,点在第一象限,点,当点的横坐标为何值时,的长度最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点CEFB在同一直线上,点ADBC异侧,ABCDAEDFAD

1)求证:AB=CD

2)若ABCFB40°,求D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)探索发现:如图1,已知RtABC中,∠ACB90°,ACBC,直线l过点C,过点AADl,过点BBEl,垂足分别为DE.求证:ADCECDBE

2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(13),求点N的坐标.

3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3y轴交于点P,与x轴交于点Q,将直线PQP点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥ABE.

(1)若∠BAC=50°,求∠EDA的度数;

(2)求证:直线AD是线段CE的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1AB=12ACABBDABAC=BD=8P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由B点向点D运动。它们的运动时间为t(s).

1)若点Q的运动速度与点P的运动速度相等,当t=2时,ACPBPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;

2)如图2,将图1中的ACABBDAB改为CAB=DBA=60°”,其他条件不变。设点Q的运动速度为每秒x个单位,是否存在实数x,使得ACPBPQ全等?若存在,求出相应的x,t的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是ABF,CDE的内心,则O1O2=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值,对于任意正实数a、b,可作如下变形a+b==-2+2=+2又∵≥0, +2≥0+ 2,即a+b ≥2

(1)根据上述内容,回答下列问题:在a+b≥2(a、b均为正实数)中,若ab为定值p,则a+b≥ 2,当且仅当a、b满足________时,a+b有最小值2

(2)思考验证:如图1,ABC中,∠ACB=90°,CDAB,垂足为D,COAB边上中线,AD=2a ,DB=2b, 试根据图形验证a+b≥2成立,并指出等号成立时的条件.

(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EFGH分别在它的四条边上,且四边形EFGH是什么特殊四边形?你是如何判断的?

查看答案和解析>>

同步练习册答案