精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙O中,半径OAOB,过OA的中点CFDOB交⊙ODF两点,且CD,以O为圆心,OC为半径作,交OBE点.则图中阴影部分的面积为______________

【答案】

【解析】分析:(1)首先证明OADF,由垂径定理求出CD=,由OD=2CO推出∠CDO=30°,设OC=x,则OD=2x,利用勾股定理求得OD的长,再根据S=SCDO+S扇形OBD-S扇形OCE计算即可.

详解:连接OD

OAOB

∴∠AOB=90°

CDOB

∴∠OCD=90°

OADF

CD=DF=

RtOCD中,∵CAO中点,

OA=OD=2CO

OC=x

x2+()2=(2x)2

解得:x=1

OA=OD=2

OC=OD,OCD=90°,

∴∠CDO=30°

FDOB

∴∠DOB=ODC=30°

S=SCDO+S扇形OBDS扇形OCE=×1×+=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理,但远在毕达哥拉斯出生之前,这一定理早已被人们所利用,世界上各个文明古国都对勾股定理的发现和研究作出过贡献(希腊、中国、埃及、巴比伦、印度等),特别是定理的证明,据说有400余种方法.其中在《几何原本》中有一种证明勾股定理的方法:如图所示,作CG⊥FH,垂足为G,交AB于点P,延长FA交DE于点S,然后将正方形ACED、正方形BCNM作等面积变形,得S正方形ACED=SACQS,S正方形BCNM=SBCQT,这样就可以完成勾股定理的证明.对于该证明过程,下列结论错误的是(  )

A. △ADS≌△ACB B. SACQS=S矩形APGF

C. SCBTQ=S矩形PBHG D. SE=BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=4,点EBC上一点,且tan∠BAE=,点FCD的中点,连接AE、BF△ABE着点E按顺时针方向旋转,使点B落在BF上的B1处位置处,点A经过旋转落在A1点位置处,连接AA1BF于点N.

(1)求证:∠BFC=∠A1 B1F;

(2)说明点NAA1的中点;

(3)求AN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).

(1)探究:上述操作能验证的等式是 ;(请选择正确的一个)

A.a2-2ab+b2=(a-b)2 B.a2-b2=(a+b)(a-b)

C.a2+ab=a(a+b)

(2)应用:利用你从(1)选出的等式,完成下列各题:

①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;

②计算:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为直径,AB=4CD为圆上两个动点,NCD中点,CMABM,当CD在圆上运动时保持∠CMN=30°,则CD的长( 

A. CD的运动位置而变化,且最大值为4 B. CD的运动位置而变化,且最小值为2

C. CD的运动位置长度保持不变,等于2 D. CD的运动位置而变化,没有最值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(),在四边形中,分别是上的点,且.探究图中线段之间的数量关系.小王同学探究此问题的方法是,延长到点,使,连接,先证明,再证明,可得出结论,他的结论应该是__________

如图(),若在四边形中,分别是,上的点,且,上述结论是否仍然成立,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,如图1,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形EFGH,如图2.设小正方形的边长为x厘米.

(1)当矩形纸板ABCD的一边长为90厘米时,求纸盒的侧面积的最大值;

(2)当EHEF=7:2,且侧面积与底面积之比为9:7时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲骑自行年,乙乘坐汽车从A地出发沿同一路线匀速前往B地,甲先出发.设甲行驶的时间为x(h),甲、乙两人距出发点的路程S(km)S(km)关于x的函数图象如图1所示,甲、乙两人之同的距离y(km)关于x的函数图象如图2所示,请你解决以下问题:

(1)甲的速度是__________km/h,乙的速度是_______km/h

(2)a=_______b=_______

(3)甲出发多少时间后,甲、乙两人第二次相距7.5km

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠B=90°AB=16cmBC=12cmPQABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

1)出发2秒后,求PQ的长.

2)当点Q在边BC上运动时,出发几秒钟后,PQB能形成等腰三角形?

3)当点Q在边CA上运动时,求能使BCQ成为等腰三角形的运动时间.

查看答案和解析>>

同步练习册答案