精英家教网 > 初中数学 > 题目详情

【题目】推理填空:

如图,已知∠1=∠2,∠B=∠C,可推得ABCD.理由如下:

∵∠1=∠2(已知),且∠1=∠4   

∴∠2=∠4 (等量代换)

CEBF    

∴∠   =∠3   

又∵∠B=∠C(已知),∴∠3=∠B(等量代换)

ABCD    

【答案】对顶角相等;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.

【解析】

第一个空根据对顶角的性质填写;第二、五个空根据平行线的判定填写;第三、四个空按平行线的性质填写.

∵∠1=2(已知),且∠1=4(对顶角相等),

∴∠2=4(等量代换),

CEBF(同位角相等,两直线平行),

∴∠C=3(两直线平行,同位角相等);

又∵∠B=C(已知),

∴∠3=B(等量代换),

ABCD(内错角相等,两直线平行).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABCD中,点ECD上,点FAB上,连接AE、CF、DF、BE,∠DAE=∠BCF.

(1)如图1,求证:四边形DFBE是平行四边形;

(2)如图2,若ECD的中点,连接GH,在不添加任何辅助线的情况下,请直接写出图2中以GH为边或以GH为对角线的所有平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,等腰△ABC中,AB=AC,∠BAC=30°,AB边上的中垂线DE分别交AB,AC于点D、E,∠BAC的平分线交DE于点F.连接BF、CF、BE.

(1)求证:△BCF为等边三角形;

(2)猜想EF、EB、EC三条线段的关系,并说明理由;

(3)如图2,在BE的延长线上取一点M,连接AM,使AM=AB,连接MC并延长交AF的延长线于点M.求证:AN=MC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答题
(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;
(2)如图2,将 (1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】心理学家研究发现,一般情况下,一节课分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为 理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数随时间(分钟)的变化规律如图所示(其中都为线段)

1)分别求出线段的函数解析式;

2)开始上课后第分钟时与第分钟时相比较,何时学生的注意力更集中?

3)一道数学竞赛题,需要讲分钟,为了效果较好,要求学生的注意力指标数最低达到那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

122+0+(﹣0.22014×52014

2)(2a3b3(﹣8ab2÷(﹣4a4b3

3)(2a+12﹣(2a+1)(﹣1+2a

4201922018×2020(运用整式乘法公式进行计算)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CDAB,垂足为D,点EBC上,EFAB,垂足为F

(1)CDEF平行吗?为什么?

(2)如果∠1=2,且∠3=120°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCDEC中,ABDE.若添加条件后使得ABC≌△DEC,则在下列条件中,不能添加的是(  )

A. BCECBE B. BCECACDC

C. BEAD D. BCECAD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话。

⑴现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得每行的三个数、每列的三个数、斜对角的三个数之和都等于15.

⑵通过研究问题⑴,利用你发现的规律,将3,5,-7,1,7,-3,9,-5,-1

这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.

查看答案和解析>>

同步练习册答案