【题目】已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4.设顶点为点P,与x轴的另一交点为点B.
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线 y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒 个单位长度的速度由点P向点O 运动,过点M作直线MN∥x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒.求S关于t的函数关系式.
【答案】
(1)
解:设二次函数的解析式为y=ax2+bx+c
由题意得 ,
解得 ,
∴二次函数的解析式为y=x2﹣8x+12,
点P的坐标为(4,﹣4)
(2)
解:方法一:
存在点D,使四边形OPBD为等腰梯形.理由如下:
当y=0时,x2﹣8x+12=0,
∴x1=2,x2=6,
∴点B的坐标为(6,0),
设直线BP的解析式为y=kx+m
则 ,
解得
∴直线BP的解析式为y=2x﹣12
∴直线OD∥BP,
∵顶点坐标P(4,﹣4),
∴OP=4
设D(x,2x)则BD2=(2x)2+(6﹣x)2
当BD=OP时,(2x)2+(6﹣x)2=32,
解得:x1= ,x2=2,
当x2=2时,OD=BP= ,四边形OPBD为平行四边形,舍去,
∴当x= 时四边形OPBD为等腰梯形,
∴当D( , )时,四边形OPBD为等腰梯形
方法二:
设D(t,2t),O(0,0),P(4,﹣4),B(6,0),
∴KBP= =2,KOD= =2,
∴KBP=KOD,
∴BP∥OD,
∵四边形OPBD为等腰梯形,∴DB=OP,
(t﹣6)2+(2t﹣0)2=(4﹣0)2+(﹣4﹣0)2,
∴t1=2(舍),t2= ,∴D( , )
(3)
解:方法一:
①当0<t≤2时,
∵运动速度为每秒 个单位长度,运动时间为t秒,则MP= t,
∴PH=t,MH=t,HN= (4﹣t),
∴MN=MH+HN=2+ t,
∴S= t2;
②当2<t<4时,P1G=2t﹣4,P1H=t,
∵MN∥OB
∴△P1EF∽△P1MN,
∴ ,
∴ ,
∴ =3t2﹣12t+12,
∴S= t2﹣(3t2﹣12t+12)=﹣ t2+12t﹣12,
∴当0<t≤2时,S= t2,
当2<t<4时,S=﹣ t2+12t﹣12
方法二:
O(0,0),P(4,﹣4),
∴lOP:y=﹣x,
∴M(4﹣t,t﹣4),
∵B(6,0),∴lBP:y=2x﹣12,
∴N( ,t﹣4),
①当0<t≤2时,S= = = ,
②当2<t<4时,
∵△PMN与△P′MN关于MN对称,
∴KMP′+KMP=0,KNP′+KNP=0,
∴lMP′:y=x+2t﹣8,lNP′:y=﹣2x+2t+4,
∴D(8﹣2t,0),C(t+2,0),
∴S= (CD+MN)|MY|= =﹣ .
【解析】(1)利用对称轴公式,A、C两点坐标,列方程组求a、b、c的值即可;(2)存在.由(1)可求直线PB解析式为y=2x﹣12,可知PB∥OD,利用BD=PO,列方程求解,注意排除平行四边形的情形;(3)由P(4,﹣4)可知直线OP解析式为y=﹣x,当P1落在x轴上时,M、N的纵坐标为﹣2,此时t=2,按照0<t≤2,2<t<4两种情形,分别表示重合部分面积.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】下列计算正确的是( )
A.(﹣p2q)3=﹣p5q3
B.(12a2b3c)÷(6ab2)=2ab
C.3m2÷(3m﹣1)=m﹣3m2
D.(x2﹣4x)x﹣1=x﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先计算,再找出规律,然后根据规律进行计算.
(1)计算:① ② ③
(2)根据(1)中的计算,用字母表示出你发现的规律.
=__________________
(3)根据(2)中的结论,计算下列结果:
①
②
③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】华联超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)
甲 | 乙 | |
进价(元/件) | 22 | 30 |
售价(元/件) | 29 | 40 |
(1)该商场购进甲、乙两种商品各多少件?
(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O是坐标原点,点B(0,12),点A在第一象限内,△AOB为等腰三角形,∠BAO=90°,AB=AO,AC⊥OB,点D从点B出发,以每秒2个单位的速度沿y轴向终点O运动,连接DA,过点A作AE⊥AD,射线AE交x轴于点E,连接BE,交线段AC于点F,交线段OA于点G.
(1)请直接写出A的坐标;
(2)点D运动的时间为t秒时,用含t的代数式表示△ACD的面积S,并写出t的取值范围;
(3)在(2)的条件下,当四边形DAEO的面积等于6S时,求△AGF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直接写出计算结果:
(1) -2-11 = (2) 5-(-12)=
(3) (-5)×(-6) = (4)
(5) = (6) =
(7)-3.5+3.5 = (8) =
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如,由图①,可得等式:(a+2b)(a+b)=a2+3ab+2b2.
(1)由图②,可得等式:__________________________;
(2)利用(1)中所得到的结论,解决下面的问题:
已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)利用图③中的纸片(足够多),画出一种拼图,使该拼图可用来验证等式:2a2+5ab+2b2=(2a+b)(a+2b);
(4)琪琪用2张边长为a的正方形,3张边长为b的正方形,5张边长分别为a,b的长方形纸片重新拼出一个长方形,那么该长方形较长的一条边长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点 O为数轴原点,点A表示的数是4,将线段OA沿数轴移动,移动后的线段记为O′A′.
(1)当点O′恰好是OA的中点时,数轴上点A′表示的数为 .
(2)设点A的移动距离AA′=x.
①当O′A=1时,求x的值;
②D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com