精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.

(1)直接写出A、B、C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
②设△BCF的面积为S,求S与m的函数关系式.

【答案】
(1)解:A(﹣1,0),B(3,0),C(0,3).

抛物线的对称轴是:直线x=1.


(2)解:①设直线BC的函数关系式为:y=kx+b.

把B(3,0),C(0,3)分别代入得:

解得:

所以直线BC的函数关系式为:y=﹣x+3.

当x=1时,y=﹣1+3=2,

∴E(1,2).

当x=m时,y=﹣m+3,

∴P(m,﹣m+3).

在y=﹣x2+2x+3中,当x=1时,y=4.

∴D(1,4)

当x=m时,y=﹣m2+2m+3,

∴F(m,﹣m2+2m+3)

∴线段DE=4﹣2=2,

线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m

∵PF∥DE,

∴当PF=ED时,四边形PEDF为平行四边形.

由﹣m2+3m=2,

解得:m1=2,m2=1(不合题意,舍去).

因此,当m=2时,四边形PEDF为平行四边形.

②设直线PF与x轴交于点M,

由B(3,0),O(0,0),

可得:OB=OM+MB=3.

∵S=SBPF+SCPF

即S= PFBM+ PFOM= PF(BM+OM)= PFOB.

∴S= ×3(﹣m2+3m)=﹣ m2+ m(0≤m≤3).

∵B(3,0),C(0,3),D(1,4),

∵∠DEC=∠COB=90°,

∴△DEC∽△COB,

∴∠DCE=∠CBO,

∴∠DCE+∠OCB=90°,

∴DC⊥BC,

∴△BCD的外接圆圆心M为BD中点,

∴MX= =2,MY= =2,

∴△BCD的外接圆圆心M(2,2)


【解析】(1)与x轴交点令y=0,解方程即可,与y轴交点,令x=0,求出y即可,对称轴可套公式x=;(2)若四边形PEDF为平行四边形,可得PF∥DE,PF=ED,用m的代数式表示PF,等于DE的长,构建方程即可;(3)用分割的方法把三角形面积分成SBPF+SCPF,分别用m的代数式表示底边和高即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,由7个形状,大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是( )

A.
B.2
C.
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果商店经销一种苹果,共有20筐,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如表:

与标准质量的差值(单位;千克)

-3

-2

-1.5

0

1

2.5

筐数

1

4

2

3

2

8

1)这20筐苹果中,最重的一筐比最轻的一筐多重多少千克?

2)与标准重量比较,这20筐苹果总计超过或不足多少千克?

3)若苹果每千克售价元,则出售这20筐苹果可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BCD、E.

(1)若BC=10,则△ADE周长是多少?为什么?

(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)先化简,再求值:(x-3)2+2(x-2)(x+7)-(x+2)(x-2);其中x2+2x-3=0

2)已知,求: 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000/2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为1202

若购买者一次性付清所有房款,开发商有两种优惠方案:

方案一:降价8%,另外每套楼房赠送a元装修基金;

方案二:降价10%,没有其他赠送.

1)请写出售价y(元/2)与楼层x1≤x≤23x取整数)之间的函数关系式;

2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).

(1)画出△ABC向下平移4个单位长度得到的△A1B1C1
(2)点C1的坐标是
(3)以点B为位似中心,在网格内画出△A2B2C2
(4)使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将半径为4,圆心角为90°的扇形BACA点逆时针旋转60°,点BC的对应点分别为点DE且点D刚好在上,则阴影部分的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一张长方形纸片ABCD沿EF折叠后,EDBC交点为GDC分别在MN的位置上,若∠2-1=40°,则∠EFC的度数为(

A. 115°B. 125°C. 135°D. 145°

查看答案和解析>>

同步练习册答案