平面内有四个点A、B、C、D组成凸四边形ABCD,其中∠ABC=1500,∠ADC=3
00,AB=CB=2,则满足题意的BD长度为整数
的值可以是 (
)。
科目:初中数学 来源: 题型:
如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连结BP. 将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连结AA1,射线AA1分别交射线PB、射线B1B于点E、F.
(1) 如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在 关系(填“相似”或“全等”),并说明理由;
(2)如图2,设∠ABP=β . 当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;
(3)如图3,当α=60°时,点E、F与点B重合. 已知AB=4,设DP=x,△A1BB1的面
积为S,求S关于x的函数关系式.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面坐标系中,直线y=﹣x+2与x轴,y轴分别交于点A,点B,动点P(a,b)在第一象限内,由点P向x轴,y轴所作的垂线PM,PN(垂足为M,N)分别与直线AB相交于点E,点F,当点
P(a,b)运动时,矩形PMON的面积为定值2.当点E,F都在线段AB上时,由三条线段AE,EF,BF组成一个三角形,记此三角形的外接圆面积为S1,△OEF的面积为S2.试探究:
是否存在最大值?若存在,请求出该最大值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知菱形ABCD的边长为4,∠A=60°,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=60°,图中两块阴影部分图形关于直线AC成轴对称,设它们的
面积和为S1.
(1)求证:∠APE=∠CFP;
(2)设四边形CMPF的面积为S2,CF=x,
.
①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;
②当图中两块阴影部分图形关于点P成中心对称时,求y的值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
已知矩形纸片ABCD中,AB=1,BC=
,将该纸片叠成一个平面图形,折痕EF不经过A点(E、F是该矩形边界上的点),折叠后点A落在A′处,给出以下判断:![]()
①当四边形A,CDF为矩形时,EF=
;
②当EF=
时,四边形A′CDF为矩形;
③当EF=2时,四边形BA′CD为等腰梯形;
④当四边形BA′CD
为等腰梯形时,EF=2。
![]()
其中正确的是
(把所有正确结论序号都填在横线上)。
查看答案和解析>>
科目:初中数学 来源: 题型:
阅读下面的材料:
小明在数学课外小组活动中遇到这样一个“新定义”问题
:
![]()
小明是这样解
决问题的:由新定义可知a=1,b=-2,又b<0,所以1※(-2)=![]()
.
请你参考小明的解题思路,回答下列问题:
(1)计算:2※3= ;
(2)若5※m=![]()
,则m= .
(3)
函数y=2※x(x≠0)的图象大致是(
)
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.
(1)反
比例函数
是闭区间[1,2014]上的“闭函数”吗?请判断并说明理由;
(2)若一次函数
是闭区间[m,n]上的“闭函数”,求此函数的解析式;
(3)若二次函数
是闭区间[a,b]上的“闭函数”,求实数a,b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com