如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连结BP. 将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连结AA1,射线AA1分别交射线PB、射线B1B于点E、F.
(1) 如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在 关系(填“相似”或“全等”),并说明理由;
(2)如图2,设∠ABP=β . 当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;
(3)如图3,当α=60°时,点E、F与点B重合. 已知AB=4,设DP=x,△A1BB1的面
积为S,求S关于x的函数关系式.
![]()
![]()
(1) 相似。理由见解析(2)存在,α=2β+60°(3)![]()
![]()
【解析】解: (1
) 相似 …………………………………………………
………1分
由题意得:∠APA1=∠BPB1=α
AP= A1P BP=B1P
则 ∠PAA1 =∠PBB1 =![]()
……………………………2分
∵∠PBB1 =∠EBF ∴∠PAE=∠EBF
又∵∠BEF=∠AEP
∴△BEF ∽△AEP………………………………………………………3分
(2)存在,理由如下: ………………………………………………………4分
易得:△BEF ∽△AEP
若要使得△BEF≌△AEP,只需要满足BE=AE即可 …………………5分
∴∠BAE=∠ABE
∵∠BAC=60° ![]()
∴∠BAE=![]()
![]()
∵∠ABE=β ∠BAE=∠ABE ………………………………6分
∴![]()
即α=2β+60° ………………………………7分
![]()
在Rt△ABD中,BD=![]()
![]()
∴BG=![]()
……………………………… 9
分
∴![]()
(0≤x<2)……
…………10分
(1)通过
三角形的相似性求证
(2)由(1)得△BEF ∽△AEP,若要使得△BEF≌△AEP,只需要满足BE=AE,即∠BAE![]()
=∠ABE,求得∠BAE的度数的表示,即可求出
α与β之间的数量关系
(3)连结BD,交A1B1于点G,过点A1作A1H⊥AC
于点H. 由已知求得△PAA1是等边三角形,在Rt△ABD中,求得BG的长,从而通过三角形的面积,即可求得S关于x的函数关系式
科目:初中数学 来源: 题型:
如图,矩形的长
和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自左向右匀速运动至等腰三角形的底与另一宽重合。设矩形与等腰三角形重叠部分(阴影部分)的面积为y,等腰三角形
自左向右运动的距离为x,那么y关于x的函数关系式为
。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在边长为4的正方形ABCD中,动点P,Q同时从A点出发,沿AB
→BC→CD向D点运动,点P的速度是每秒2个单位长度,点Q的速度是每秒1个单位长度,当P运动到D点时,P、Q
两点同时停止运动。设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系式是 。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
阅读下列材料:
小华遇到这样一个问题,如图1,△ABC中,∠ACB=30º,BC=6,AC=5,在△ABC内部有一点P,连接PA.PB.PC,求PA+PB+PC的最小值.
![]()
小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折.旋转.平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60º,得到△EDC,连接PD.BE,则BE的长即为所求.
(1)请你写出图2中,PA+PB+PC的最小值为 ;
(2)参考小华的思考问题的方法,解决下列问题:
①如图3,菱形ABCD中,∠ABC=60º,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于PA+PB+PC最小值的线段(保留画图痕迹,画出一条即可);
②若①中菱形ABCD的边长为4,请直接写出当PA+PB+P
C值最小时PB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,矩形ABCD中, BC=2,点P是线段BC上一点,连接PA,将线段PA绕点
P逆时针
旋转90°得到线段PE,平移线段PE得到CF,连接EF。问:四边形P
CFE
的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系xOy中,抛物线
交y轴于点C
,对称轴与x轴交于点D,顶点为M,设点P(x,y)是第一象限内该抛物线上的一个动点,直线PE绕点P旋转,
与y轴交于点E,是否存在以O、P、E为顶点的三角形与△OPD全等?若存在,请求出点E的坐标;若不存在,请说明理由。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知抛物线
与x轴交于点A,与y轴交于点B,动点Q从点O出发,以每秒2个单位长度的速度在线段OA上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒。
问:△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理
由。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AD的
长;
(2)设CP=
x, △PDQ的面积为y,求y关于x的函数表达式, 并求自变量的取值范围;
(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
平面内有四个点A、B、C、D组成凸四边形ABCD,其中∠ABC=1500,∠ADC=3
00,AB=CB=2,则满足题意的BD长度为整数
的值可以是 (
)。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com