精英家教网 > 初中数学 > 题目详情

 如图,在边长为4的正方形ABCD中,动点P,Q同时从A点出发,沿AB→BC→CD向D点运动,点P的速度是每秒2个单位长度,点Q的速度是每秒1个单位长度,当P运动到D点时,P、Q两点同时停止运动。设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系式是        


【考点】动点问题的函数图象,正方形的性质,分类和转换思想的应用。

【分析】根据题意,动点P,Q运动的位置有三种形式:

            

点P,Q都在AB上,此时0≤t≤2,S=0

            点P在BC上,点Q在AB上,如图1,此时2<t≤4,

由题意得, AQ=t,BP=

综上所述,S与t的函数关系式是


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


【阅读材料】己知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切⊙O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.

∵S=S△OBC+SOAC+S△OAB=BC·r+AC·r+AB·r=a·r+b·r+c·r=(a+b+c)r

(1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值;

(2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC分别相切于D、E和F,己知AD=3,BD=2,求r的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知抛物线C:过原点,与轴的另一个交点为B(4,0),A为抛物线C的顶点,直线OA的解析式为,将抛物线C绕原点O旋转180°得到抛物线C1,求抛物线C、C1的解析式。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,长是2宽是1的矩形和边长是1的正三角形,矩形的一长边与正三角形的一边在同一水平线上,三角形沿该水平线自左向右匀速穿过矩形。设穿过的时间为t,矩形与三角形重合部分的面积为S,那么S关于t的函数大致图象应为 【    】

A.     B.       C.        D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点PQ运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连接PQ,设运动时间为tt >0)秒.

(1)求线段AC的长度;

(2)当点Q从点B向点A运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;

(3)伴随着PQ两点的运动,线段PQ的垂直平分线为l

①当l经过点A时,射线QPAD于点E,求AE的长;

②当l经过点B时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在坐标系xOy中,△ABC中,∠BAC=90°,∠ABC=60°,A(1,0),B(0,),抛物线的图象过C点.

(1)求抛物线的解析式;

(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为1:2的两部分?

查看答案和解析>>

科目:初中数学 来源: 题型:


如图①,在矩形纸片ABCD中,AB=+1,AD=

(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为    

(2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为    

(3)如图④,将图②中的△AED′绕点E顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B,求弧D′D″的长.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:


如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连结BP. 将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连结AA1,射线AA1分别交射线PB、射线B1B于点EF.

      (1) 如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在       关系(填“相似”或“全等”),并说明理由;

(2)如图2,设∠ABP=β . 当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出αβ之间的数量关系;若不存在,请说明理由;

(3)如图3,当α=60°时,点EF与点B重合. 已知AB=4,设DP=x,△A1BB1的面

积为S,求S关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面坐标系中,直线y=﹣x+2与x轴,y轴分别交于点A,点B,动点P(a,b)在第一象限内,由点P向x轴,y轴所作的垂线PM,PN(垂足为M,N)分别与直线AB相交于点E,点F,当点P(a,b)运动时,矩形PMON的面积为定值2.当点E,F都在线段AB上时,由三条线段AE,EF,BF组成一个三角形,记此三角形的外接圆面积为S1,△OEF的面积为S2.试探究:是否存在最大值?若存在,请求出该最大值;若不存在,请说明理由.

                                                              

查看答案和解析>>

同步练习册答案