精英家教网 > 初中数学 > 题目详情

已知抛物线C:过原点,与轴的另一个交点为B(4,0),A为抛物线C的顶点,直线OA的解析式为,将抛物线C绕原点O旋转180°得到抛物线C1,求抛物线C、C1的解析式。


如图,过A作AE⊥OB于E,

∴ 抛物线C的解析式为,即

 又∵抛物线C1是由抛物线C绕原点O旋转180°得到,

∴ 抛物线C、C1关于原点对称。

∴抛物线C1的顶点坐标A1为() 。

 ∴抛物线C1的解析式为,即

【考点】二次函数图象的对称性,待定系数法,曲线上点的坐标与方程的关系,旋转的性质。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既不是轴对称图形也不是中心对称图形的概率为【    】

A.               B.               C.                 D.1

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是点E,F,连接EF,交AD于点G,求证:AD⊥EF.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自左向右匀速运动至等腰三角形的底与另一宽重合。设矩形与等腰三角形重叠部分(阴影部分)的面积为y,等腰三角形自左向右运动的距离为x,那么y关于x的函数关系式为

         

查看答案和解析>>

科目:初中数学 来源: 题型:


 有两个全等的等腰直角三角板ABC和EFG其直角边长均为6(如图1所示)叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转,旋转角满足0<º<90º,四边形CHGK是旋转过程中两块三角板的重叠部分(如图2).

(1)在上述旋转过程中,①BH与CK有怎样的数量关系?②四边形CHGK的面积是否发生变化?并证明你发现的结论.

(2)如图,连接KH,在上述旋转过程中,是否存在某一位置使△GKH的面积恰好等于△ABC面积的?若存在,请求出此时KC的长度;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点PQ运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连接PQ,设运动时间为tt >0)秒.

(1)求线段AC的长度;

(2)当点Q从点B向点A运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;

(3)伴随着PQ两点的运动,线段PQ的垂直平分线为l

①当l经过点A时,射线QPAD于点E,求AE的长;

②当l经过点B时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,抛物线与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D。平移抛物线,使其经过点B、D,则平移后的抛物线的解析式为      

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,在边长为4的正方形ABCD中,动点P,Q同时从A点出发,沿AB→BC→CD向D点运动,点P的速度是每秒2个单位长度,点Q的速度是每秒1个单位长度,当P运动到D点时,P、Q两点同时停止运动。设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系式是        

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,已知抛物线与x轴交于点A,与y轴交于点B,动点Q从点O出发,以每秒2个单位长度的速度在线段OA上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒。

问:△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由。

查看答案和解析>>

同步练习册答案