如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P、Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连接PQ,设运动时间为t(t >0)秒.
![]()
(1)求线段AC的长度;
(2)当点Q从点B向点A运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;
(3)伴随着P、Q两点的运动,线段PQ的垂直平分线为l:
①当l经过点A时,射线QP交AD于点E,求AE的长;
②当l经过点B时,求t的值.
(1)5 (2)
,
(3)3、t=2.5,![]()
【解析】
试题分析:(1)在矩形ABCD中,
![]()
![]()
(2)过点P作PH⊥AB于点H,AP=t,AQ =3-t,
由△AHP∽△ABC,得
,∴PH=
,
,
.
(3) ①如图②,线段PQ的垂直平分线为l经过点A,则AP=AQ,
即3-t=t,∴t=1.5,∴AP=AQ=1.5,
延长QP交AD于点E,过点Q作QO∥AD交AC于点O,
则![]()
,
,∴PO=AO-AP=1.
由△APE∽△OPQ,得
.
(ⅱ)如图④,当点Q从A向B运动时l经过点B,
![]()
![]()
考点:矩形、相似三角形
点评:本题考查矩形,相似三角形,要求考生掌握矩形的性质,相似三角形的判定方法,会判定两个三角形相似
科目:初中数学 来源: 题型:
如图,已知⊙O的直径CD为4,弧AC的度数为120°,弧BC的度数为30°,在直径CD上作出点P,使BP+AP的值最小,若BP+AP的值最小,则BP+AP的最小值为 。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
已知抛物线C:
过原点,与
轴的另一个交点为B(4,0),A为抛物线C的顶点,直线OA的解析式为
,将抛物线C绕原点O旋转180°得到抛物线C1,求抛物线C、C1的解析式。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,长是2宽是1的矩形和边长是1的正三角形,矩形的一长边与正三角形的一边在同一水平线上,三角形沿
该水平线自左向右匀速穿过矩形。设穿过的时间为t,矩形与三角形重合部分的面积为S,那么S关于t的函数大致图象应为 【 】
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在坐标系xOy中,△ABC中,∠BAC=90°,∠ABC=60°,A(1,0),B(0,
),抛物线
的图象过C点.
(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为1
:2的两部分?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在△ABC中,已知AB=AC=4,BC=
,且△ABC≌△DEF,将△DEF与△ABC重合在一起
,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点。探究:在△DEF运动过程中,重叠部分能否构成等![]()
腰三角形?若
能,求出
△AEM的面积;若不能,请说明理由。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com