精英家教网 > 初中数学 > 题目详情

如图,直线l:轴交于点A,将直线l绕点A顺时针旋转75º后,所得直线的解析式为【    】

A.       B.        C.      D.


B。

【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,由已知,可求直线轴的交点分别为B(1,0),A(0,),

       


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,已知是一次函数的图象和反比例函数的图象的两个交点.

(1)求反比例函数和一次函数的函数关系式;

(2)求△的面积;

(3)则方程的解是                ;(请直接写出答案)

(4)则不等式的解集是                .(请直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()

A.    B.    C.    D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,),且与y轴交于点C(0,),与x轴交于A,B两点(点A在点B的左边)。

(1)求抛物线的解析式及A,B两点的坐标;

(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自左向右匀速运动至等腰三角形的底与另一宽重合。设矩形与等腰三角形重叠部分(阴影部分)的面积为y,等腰三角形自左向右运动的距离为x,那么y关于x的函数关系式为

         

查看答案和解析>>

科目:初中数学 来源: 题型:


把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90°…,按上述方法经过4次旋转后,顶点O经过的总路程为  ,经过61次旋转后,顶点O经过的总路程为  

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点PQ运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连接PQ,设运动时间为tt >0)秒.

(1)求线段AC的长度;

(2)当点Q从点B向点A运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;

(3)伴随着PQ两点的运动,线段PQ的垂直平分线为l

①当l经过点A时,射线QPAD于点E,求AE的长;

②当l经过点B时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则当y=时,x的取值是【    】

A. 1      B.        C. 1或      D.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,在平面直角坐标系xOy中,抛物线交y轴于点C,对称轴与x轴交于点D,顶点为M,设点P(x,y)是第一象限内该抛物线上的一个动点,直线PE绕点P旋转,与y轴交于点E,是否存在以O、P、E为顶点的三角形与△OPD全等?若存在,请求出点E的坐标;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案