如图,长是2宽是1的矩形和边长是1的正三角形,矩形的一长边与正三角形的一边在同一水平线上,三角形沿
该水平线自左向右匀速穿过矩形。设穿过的时间为t,矩形与三角形重合部分的面积为S,那么S关于t的函数大致图象应为 【 】
![]()
A.
B.
C.
D.![]()
科目:初中数学 来源: 题型:
如图,矩形ABCD中,AB=3,BC=4,E、F分别是边CD、AD上的点,且CE=1,AF=
,
AE、BF相交于点O,下列结论:(1)BF =
AE;(2)AE⊥BF;(3)
;(4)
中正确的
有【 】
![]()
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,矩形的长
和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自左向右匀速运动至等腰三角形的底与另一宽重合。设矩形与等腰三角形重叠部分(阴影部分)的面积为y,等腰三角形
自左向右运动的距离为x,那么y关于x的函数关系式为
。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P、Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连接PQ,设运动时间为t(t >0)秒.
![]()
(1)求线段AC的长度;
(2)当点Q从点B向点A运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;
(3)伴随着P、Q两点的运动,线段PQ的垂直平分线为l:
①当l经过点A时,射线QP交AD于点E,求AE的长;
②当l经过点B时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线![]()
与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点
D。平移抛物线,使其经
过点B、D,则平移后的抛物线的解析式为 。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图
,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则当y=
时,x的取
值是【 】
![]()
A. 1 B.
C. 1或
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在边长为4的正方形ABCD中,动点P,Q同时从A点出发,沿AB
→BC→CD向D点运动,点P的速度是每秒2个单位长度,点Q的速度是每秒1个单位长度,当P运动到D点时,P、Q
两点同时停止运动。设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系式是 。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
阅读下列材料:
小华遇到这样一个问题,如图1,△ABC中,∠ACB=30º,BC=6,AC=5,在△ABC内部有一点P,连接PA.PB.PC,求PA+PB+PC的最小值.
![]()
小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折.旋转.平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60º,得到△EDC,连接PD.BE,则BE的长即为所求.
(1)请你写出图2中,PA+PB+PC的最小值为 ;
(2)参考小华的思考问题的方法,解决下列问题:
①如图3,菱形ABCD中,∠ABC=60º,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于PA+PB+PC最小值的线段(保留画图痕迹,画出一条即可);
②若①中菱形ABCD的边长为4,请直接写出当PA+PB+P
C值最小时PB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AD的
长;
(2)设CP=
x, △PDQ的面积为y,求y关于x的函数表达式, 并求自变量的取值范围;
(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.
![]()
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com