精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,BG=4,则△EFC的周长为( )

A. 11 B. 10 C. 9 D. 8

【答案】D

【解析】试题分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.

ABCD中,AB=CD=6AD=BC=9∠BAD的平分线交BC于点E

∴∠BAF=∠DAF

∵AB∥DFAD∥BC

∴∠BAF=∠F=∠DAF∠BAE=∠AEB

∴AB=BE=6AD=DF=9

∴△ADF是等腰三角形,△ABE是等腰三角形,

∵AD∥BC

∴△EFC是等腰三角形,且FC=CE

∴EC=FC=9﹣6=3

△ABG中,BG⊥AEAB=6BG=

∴AG==2

∴AE=2AG=4

∴△ABE的周长等于16

∵△CEF∽△BEA,相似比为12

∴△CEF的周长为8

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将直线y=3x+1向下平移1个单位长度,得到直线y=3x +m,若反比例函数的图象与直线y=3x+m相交于点A,且点A 的纵坐标是3.

(1)mk的值;

(2) 直接写出方程的解:

(3) 结合图象求不等式的解集

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,点是射线上一动点(与点不重合),分别平分,分别交射线于点.

1

2)当点运动到某处时,,求此时的度数.

3)当点运动时,的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,正确的说法是( )

A. ②④B. ②③C. ①④D. ①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】★若两个扇形满足弧长的比等于它们半径的比,则称这两个扇形相似.如图,如果扇形AOB与扇形A1O1B1是相似扇形,且半径OAO1A1k(k为不等于0的常数).那么下面四个结论:①∠AOBA1O1B1②△AOB∽△A1O1B1k④扇形AOB与扇形A1O1B1的面积之比为k2.成立的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.

(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?

(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,CD是边AB上的高,且

(1)求证:ACD∽△CBD;

(2)求∠ACB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是( )

A. 小莹的速度随时间的增大而增大B. 小梅的平均速度比小莹的平均速度大

C. 在起跑后180秒时,两人相遇D. 在起跑后50秒时,小梅在小莹的前面

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象分别与x轴,y轴的正半轴分別交于点ABAB=2,∠OAB=45°

1)求一次函数的解析式;

2)如果在第二象限内有一点C(a);试用含有a的代数式表示四边形ABCO的面积,并求出当ABC的面积与ABO的面积相等时a的值;

3)在x轴上,是否存在点P,使PAB为等腰三角形?若存在,请直接写出所有符合条件的点P坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案