B
分析:①根据平角的定义,折叠的性质和角平分线的性质即可作出判断;
②根据折叠的性质和等腰三角形的性质可知DE≠CH;
③无法证明BE=EF;
④根据角平分线的性质,等腰三角形的性质和三角形中线的性质可得△BEG和△HEG的面积相等;
⑤过E点作EK⊥BC,垂足为K.在RT△EKG中利用勾股定理可即可作出判断.
解答:
①由折叠的性质可知∠DEF=∠GEF,∵EB为∠AEG的平分线,∴∠AEB=∠GEB,∵∠AED=180°,∴∠BEF=90°,故正确;
②可证△EDF∽△HCF,DF>CF,故DE≠CH,故错误;
③只可证△EDF∽△BAE,无法证明BE=EF,故错误;
④可证△GEB,△GEH是等腰三角形,则G是BH边的中线,∴△BEG和△HEG的面积相等,故正确;
⑤过E点作EK⊥BC,垂足为K.设BK=x,AB=y,则有y
2+(2y-2x)
2=(2y-x)
2,解得x
1=y(不合题意舍去),x
2=
y.则
,故正确.
故正确的有3个.
故选B.
点评:本题考查了翻折变换,解答过程中涉及了矩形的性质、勾股定理,属于综合性题目,解答本题的关键是根据翻折变换的性质得出对应角、对应边分别相等,然后分别判断每个结论,难度较大,注意细心判断.