精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点O是坐标原点,BC两点的坐标分别为(3,﹣1),(21).

1)以点O为位似中心,在y轴左侧将△OBC放大2倍,画出对应的△

2)若△OBC内部一点M的坐标为(ab),则点M对应点M的坐标是  

【答案】1)见解析;(2)(﹣2a,﹣2b

【解析】

1)延长BOB'使O B'=2BO,延长COC'使OC'=2CO,连接BC,则△OB'C'满足条件;
2)利用以原点为位似中心的对应点的坐标关系,把M点的横纵坐标分别乘以-2即可得到M'的坐标.

解:(1)如图,△OB'C'即为所求;

2)∵△OB'C'与△OBC的位似比为2:1,△OB'C'y轴左侧,

M点的横纵坐标分别乘以-2即可得到M'的坐标,

M'的坐标为(﹣2a,﹣2b.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某服装店销售一批衬衫,每件进价元,开始以每件元的价格销售,每星期能卖出件,后来因库存积压,决定降价销售,经两次降价后的每件售价元,每星期能卖出件.

已知两次降价百分率相同,求每次降价的百分率;

聪明的店主在降价过程中发现,适当的降价既可增加销售又可增加收入,且每件衬衫售价每降低元,销售会增加件,若店主想要每星期获利元,应把售价定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在△ABC中,PAB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据《北京晚报》介绍,自2009年故宫博物院年度接待观众首次突破1000万人次之后,每年接待量持续增长,到2018年突破1700万人次,成为世界上接待量最多的博物馆.特别是随着《我在故宫修文物》、《上新了,故宫》等一批电视文博节目的播出,社会上再次掀起故宫热.于是故宫文创营销人员为开发针对不同年龄群体的文创产品,随机调查了部分参观故宫的观众的年龄,整理并绘制了如下统计图表.

2018年参观故宫观众年龄频数分布表

年龄x/

频数/人数

频率

20≤x30

80

b

30≤x40

a

0.240

40≤x50

35

0.175

50≤x60

37

c

合计

200

1.000

1)求表中abc的值;

2)补全频数分布直方图;

3)从数据上看,年轻观众(20≤x40)已经成为参观故宫的主要群体.如果今年参观故宫人数达到2000万人次,那么其中年轻观众预计约有 万人次.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,M为直线lxa上一点,N是直线l外一点,且直线MNx轴不平行,若MN为某个矩形的对角线,且该矩形的边均与某条坐标轴垂直,则称该矩形为直线l伴随矩形.如图为直线l伴随矩形的示意图.

1)已知点A在直线lx2上,点B的坐标为(3,﹣2

①若点A的纵坐标为0,则以AB为对角线的直线l伴随矩形的面积是 

②若以AB为对角线的直线l伴随矩形是正方形,求直线AB的表达;

2)点P在直线lxm上,且点P的纵坐标为4,若在以点(21),(﹣21),(﹣2,﹣1),(2,﹣1)为顶点的四边形上存在一点Q,使得以PQ为对角线的直线l伴随矩形为正方形,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D是等边ABCAB上的一点,且ADDB12,现将ABC折叠,使点CD重合,折痕为EF,点EF分别在ACBC上,则CECF的值为(   )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.

(1)试求A,B,C的坐标;

(2)将ABC绕AB中点M旋转180°,得到BAD.3

求点D的坐标;

判断四边形ADBC的形状,并说明理由;

(3)在该抛物线对称轴上是否存在点P,使BMP与BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+2k+1x+k2+1=0有两个不等实根x1x2

1)求实数k的取值范围

2)若方程两实根x1x2满足x1+x2=﹣x1x2k的值

查看答案和解析>>

同步练习册答案