精英家教网 > 初中数学 > 题目详情
8.如图,在△ABC中,∠CAB=90°,AB=6,AC=4,CD是△ABC的中线,将△ABC沿直线CD翻折,点B′是点B的对应点,点E是线段CD上的点,如果∠CAE=∠BAB′,那么CE的长是$\frac{16}{5}$.

分析 先证明∠AB′B=90°,再证明△ACE∽△ABB′,得到∠AEC=90°,利用面积法求出AE,再利用勾股定理求出EC即可.

解答 解:如图,∵△CDB′是由□CDB翻折,
∴∠BCD=∠DCB′,∠CBD=∠CDB′,AD=DB=DB′,
∴∠DBB′=∠DB′B,
∵2∠DCB+2∠CBD+2∠DBB′=180°,
∴∠DCB+∠CBD+∠DBB′=90°,
∵∠CDA=∠DCB+∠CBD,∠ACD+∠CDA=90°,
∴∠ABB′=∠ACE,
∵AD=DB=DB′=3,
∴∠AB′B=90°,
∵∠ACE=∠ABB′,∠CAE=∠BAB′,
∴△ACE∽△ABB′,
∴∠AEC=∠AB′B=90°,
在RT△AEC中,∵AC=4,AD=3,
∴CD=$\sqrt{A{C}^{2}+A{D}^{2}}$=5,
∵$\frac{1}{2}$AC•AD=$\frac{1}{2}$•CD•AE,
∴AE=$\frac{AC•AD}{CD}$=$\frac{12}{5}$,
在RT△ACE中,CE=$\sqrt{A{C}^{2}-A{E}^{2}}$=$\sqrt{{4}^{2}-(\frac{12}{5})^{2}}$=$\frac{16}{5}$.
故答案为$\frac{16}{5}$.

点评 本题考查翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是利用翻折不变性解决问题,学会利用相似三角形证明直角,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.已知点A(-6,y1),B(-3,y2),C(3,y3)都在函数y=(x+2)2+m的图象上,则(  )
A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图所示,有一个圆柱体,高为12cm,底面半径为3cm,在圆柱下底面A处有一只蜘蛛.它想到上底面B处捉住一只苍蝇,则蜘蛛所走的最短路线长应为多少cm(π取3.0).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.在平面直角坐标系中,边长为3的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).在旋转正方形OABC的过程中,△MBN的周长为6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在四边形ABCD中,AB∥DC,E、F为对角线BD上两点,且BE=DF,AF∥EC.
(1)求证:四边形ABCD是平行四边形;
(2)延长AF,交边DC于点G,交边BC的延长线于点H,求证:AD•DC=BH•DG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知等腰直角三角形ABC中,D、E、F分别为边AB、AC、BC的中点,点M为斜边BC所在直线上一动点,且三角形DMN为等腰直角三角形(DM=DN,D、M、N呈逆时针).
(1)如图1点M在边BC上,判断MF和AN的数量和位置关系,请直接写出你的结论.
(2)如图2点M在B点左侧时;如图3,点M在C点右侧.其他条件不变,(1)中结论是否仍然成立,并选择图2或图3的一种情况来说明理由.
(3)在图2中若∠DMB=α,连接EN,请猜测MF与EN的数量关系,即MF=(sinα+cosα) EN.(用含α的三角函数的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列命题中,真命题的是(  )
A.两个锐角的和为直角B.两个锐角的和为钝角
C.两个锐角的和为锐角D.互余且非零度的两个角都是锐角

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.|3.14-π|=π-3.14,|3-$\sqrt{8}$|=3-$\sqrt{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先化简,再求值:(x-2)2-(x+1)(x-3),其中x=-$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案