精英家教网 > 初中数学 > 题目详情
19.如图所示,有一个圆柱体,高为12cm,底面半径为3cm,在圆柱下底面A处有一只蜘蛛.它想到上底面B处捉住一只苍蝇,则蜘蛛所走的最短路线长应为多少cm(π取3.0).

分析 要求需要爬行的最短路径首先要把圆柱的侧面积展开,得到一个矩形,然后利用勾股定理求两点间的线段即可.

解答 解:如图,把圆柱的侧面展开,得到如图所示的图形,
其中AC=3π=9cm,BC=12cm,
在Rt△ABC中,AB=$\sqrt{{9}^{2}+1{2}^{2}}$=15(cm).
答:蜘蛛所走的最短路线长应为15cm.

点评 本题考查了平面展开-最短路径问题,解题的关键是理解要求需要爬行的最短路径首先要把圆柱的侧面积展开,底面周长和高以及所走的路线构成一个直角三角形,然后再求线段的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.如图,直线y=kx+b与反比例函数y=$\frac{m}{x}$的图象交于点 A(1,2)、B(-2,-1),则当取-2<x<0或x>1时,$\frac{m}{x}$<kx+b.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)$\sqrt{27}-\sqrt{\frac{1}{3}}+\sqrt{12}$   
(2)$({\sqrt{7}+\sqrt{3}})({\sqrt{7}-\sqrt{3}})-\sqrt{16}$
(3)$\frac{{\sqrt{20}+\sqrt{5}}}{{\sqrt{45}}}-\sqrt{\frac{1}{3}}•\sqrt{6}$
(4)${({2-\sqrt{10}})^2}+\sqrt{40}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,经过原点的抛物线y=-x2+4mx(m>0)与x轴的另一个交点为点A,过点P(1,m)作直线PB⊥x轴,交抛物线于点B,作点B关于抛物线对称轴的对称点C(点B、C不重合),连结BC,当点P、B不重合时,以BP、BC为边作矩形PBCQ,设矩形PBCQ的周长为l.
(1)当m=1时,求点A的坐标.
(2)当BC=$\frac{1}{2}$时,求这条抛物线所对应的函数表达式.
(3)当点P在点B下方时,求l与m之间的函数关系.
(4)连结CP,以CP为直角边作等腰直角三角形PCM,直接写出点M落在坐标轴上时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.计算(1)$\sqrt{(-7)^{2}}$=7,(2)±$\sqrt{2\frac{7}{9}}$=±$\frac{5}{3}$,(3)$\root{3}{-125}$=-5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.作图题
用圆规、直尺作图,不写作法,但要保留作图痕迹.
已知:线段a
求作:矩形ABCD,使它的对角线AC、BD相交于O点,且AC=a,∠AOB=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,BD是△ABC的角平分线,点E、F分别在边BC、AB上,且DE∥AB,∠DEF=∠A.
(1)求证:BE=AF;
(2)设BD与EF交于点M,联结AE交BD于点N,求证:BN•MD=BD•ND.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在△ABC中,∠CAB=90°,AB=6,AC=4,CD是△ABC的中线,将△ABC沿直线CD翻折,点B′是点B的对应点,点E是线段CD上的点,如果∠CAE=∠BAB′,那么CE的长是$\frac{16}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.自由转动如图所示的转盘.下列事件中哪些是必然事件?那些是随机事件?根据你的经验,将这些事件的序号按发生的可能性从小到大的顺序排列.
(1)转盘停止后指针指向1;   
(2)转盘停止后指针指向10;
(3)转盘停止后指针指向的是偶数;
(4)转盘停止后指针指向的不是奇数就是偶数;
(5)转盘停止后指针指向的数大于1.

查看答案和解析>>

同步练习册答案