分析 (1)先证明四边形ADEF为平行四边形得到AF=DE,再证明∠DBE=∠BDE得到BE=DE,则BE=AF;
(2)如图,根据平行线分线段成比例定理,由EF∥AC得到AF:AB=DM:BD,等线段代换得DE:AB=DM:BD,再由DE∥AB得到DE:AB=DN:BN,则DM:BD=DN:BN,然后利用比例的性质即可得到结论.
解答 证明:(1)∵DE∥AB,
∴∠A+∠ADE=180°,
∵∠DEF=∠A,
∴∠DEF+∠ADE=180°,
∴EF∥AD,
∴四边形ADEF为平行四边形,
∴AF=DE,
∵BD是△ABC的角平分线,![]()
∴∠DBE=∠ABD,
∵DE∥AB,
∴∠ABD=∠BDE,
∴∠DBE=∠BDE,
∴BE=DE,
∴BE=AF;
(2)如图,∵EF∥AC,
∴AF:AB=DM:BD,
∵AF=DE,
∴DE:AB=DM:BD,
∵DE∥AB,
∴DE:AB=DN:BN,
∴DM:BD=DN:BN,
即BN•MD=BD•ND.
点评 本题考查了相似三角形的判定与性质:两个三角形相似对应角相等,对应边的比相等.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.解决本题的关键是灵活应用平行线分线段成比例定理.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | AF平分BC | B. | AF⊥BC | C. | AF平分∠BAC | D. | AF平分∠BFC |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com