精英家教网 > 初中数学 > 题目详情

【题目】(阅读理解)

A,B,C为数轴上三点,若点CA的距离是点CB的距离的2倍,我们就称点C是(A,B)的优点.

例如,如图,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.

(知识运用)

如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.

(1)数   所表示的点是(M,N)的优点;

(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、AB中恰有一个点为其余两点的优点?

【答案】(1)210;(2)t5秒、10秒或7.5秒时,P、AB中恰有一个点为其余两点的优点.

【解析】

(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.

解:(1)设所求数为x,

当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;

当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;

故答案为:210;

(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,

分三种情况:

①P为(A,B)的优点.

由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),

解得x=20,

∴t=(40﹣20)÷4=5(秒);

②P为(B,A)的优点.

由题意,得PB=2PA,即40﹣x=2(x+20),

解得x=0,

∴t=(40﹣0)÷4=10(秒);

③B为(A,P)的优点.

由题意,得AB=2PA,即60=2(x+20)

解得x=10,

此时,点PAB的中点,即A也为(B,P)的优点,

∴t=30÷4=7.5(秒);

综上可知,当t5秒、10秒或7.5秒时,P、AB中恰有一个点为其余两点的优点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,数轴上有 A、B 两点,所表示的有理数分别为 ab,已知 AB=12,原点 O 是线段AB 上的一点,且 OA=2OB.

1ab

2若动点 PQ 分别从 AB 同时出发,向右运动,点 P 的速度为每秒 2 个单位长度,点 Q 的速度为每秒 1 个单位长度,设运动时间为 t 秒,当点 P 与点 Q 重合时,PQ 两点停止运动.

①当 t 为何值时,2OPOQ=4

②当点 P 到达点 O 时,动点 M 从点 O 出发,以每秒 3 个单位长度的速度也向右运动,当点 M 追上点 Q 后立即返回,以同样的速度向点 P 运动,遇到点 P 后再立即返回,以同样的速度向点 Q 运动,如此往返,直到点 PQ 停止时,点 M 也停止运动,求在此过程中点 M 行驶的总路程,并直接写出点 M 最后位置在数轴上所对应的有理数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校的学生为了对小雁塔有基本的认识,在老师的带领下对小雁塔进行了测量.测量方法如下:如图,间接测得小雁塔地部点D到地面上一点E的距离为115.2米,小雁塔的顶端为点B,且BD⊥DE,在点E处竖直放一个木棒,其顶端为C,CE=1.72米,在DE的延长线上找一点A,使A、C、B三点在同一直线上,测得AE=4.8米.求小雁塔的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=kx和双曲线在第一象限相交于点A(1,2),点B在y轴上,且AB⊥y轴.有一动点P从原点出发沿y轴以每秒1个单位的速度向y轴的正方向运动,运动时间为t秒(t>0),过点P作PD⊥y轴,交直线OA于点C,交双曲线于点D.

(1)求直线y=kx和双曲线的函数关系式;

(2)设四边形CDAB的面积为S,当P在线段OB上运动时(P不与B点重合),求S与t之间的函数关系式;

(3)在图中第一象限的双曲线上是否存在点Q,使以A、B、C、Q四点为顶点的四边形是平行四边形?若存在,请求出此时t的值和Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

1)点A表示的数为 ,点B表示的数为 ,点C表示的数为

2)用含t的代数式表示P到点A和点C的距离: PA= PC=

3)当点P运动到B点时,点QA点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A在点Q向点C运动过程中,能否追上点P?若能,请求出点Q运动几秒追上.在点Q开始运动后,PQ两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知两点A(m,0),B(0,n)(n>m>0),点C在第一象限,ABBC,BC=BA,点P在线段OB上,OP=OA,AP的延长线与CB的延长线交于点M,AB与CP交于点N.

(1)点C的坐标为: (用含m,n的式子表示);

(2)求证:BM=BN;

(3)设点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,求证:D,G关于x轴对称.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.
(1)请问每个站点的造价和公共自行车的单价分别是多少万元?
(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的有(  )

最大的负整数是﹣1;②|a|=a;③a+5一定比a大;④38万用科学记数法表示为38×104;⑤单项式﹣ 的系数是﹣2,次数是3;⑥﹣<﹣;⑦长方体的截面中,边数最多的多边形是七边形.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yk1x(x≥0)与双曲线y (x0)相交于点P(24).已知点A(40)B(03),连接AB,将RtAOB沿OP方向平移,使点O移动到点P,得到APB′.过点AACy轴交双曲线于点C,连接CP.

(1)k1k2的值;

(2)求直线PC的解析式;

(3)直接写出线段AB扫过的面积.

查看答案和解析>>

同步练习册答案