【题目】如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.
(1)在方程①3x-1=0;②x+1=0;③x-(3x+1)=-5中,不等式组关联方程是______(填序号).
(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是______(写出一个即可).
(3)若方程9-x=2x,3+x=2(x+)都是关于x的不等式组的关联方程,试求出m的取值范围.
【答案】(1)③ ;(2) 2x-2=0;(3)1≤m<2.
【解析】
(1)先求出方程的解和不等式组的解集,再判断即可;
(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为1的方程即可;
(3)先求出方程的解和不等式组的解集,即可得出答案.
解:(1)①解方程3x-1=0得:x=,
②解方程 x+1=0得:x=-,
③解方程x-(3x+1)=-5得:x=2,
解不等式组 得:<x<,
所以不等式组的关联方程是③,
故答案为:③;
(2)解不等式x- <1得:x<1.5,
解不等式1+x>-3x+2得:x>0.25,
则不等式组的解集为0.25<x<1.5,
∴其整数解为1,
则该不等式组的关联方程为2x-2=0.
故答案为:2x-2=0.
(3)解方程9-x=2x得x=3,
解方程3+x=2(x+)得x=2,
解不等式组 得m<x≤m+2,
∵方程9-x=2x,3+x=2(x+)都是关于x的不等式组的关联方程,
∴1≤m<2.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+x的图象,如图所示.
(1)在同一直角坐标系中用描点法画出一次函数y=x+的图象,观察图象写出自变量x取值在什么范围时,一次函数的值小于二次函数的值;
(2)如图,点P是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在P点上,写出平移后二次函数图象的函数表达式,并判断点P是否在函数y=x+的图象上,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是( )
①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)按要求填空:
①你认为图②中的阴影部分的正方形的边长等于 ;
②请用两种不同的方法表示图②中阴影部分的面积:
方法1:
方法2:
③观察图②,请写出代数式(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系: ;
(2)根据(1)题中的等量关系,解决如下问题:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.
(3)实际上有许多代数恒等式可以用图形的面积来表示,如图③,它表示了 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,添加下列条件后,仍不能判断△ABC≌△DEF的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,等腰直角三角形的顶点在轴上,,且,交轴于,
(1)求点的坐标;
(2)连接,求的面积;
(3)在轴上有一动点,当的值最小时,求此时的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.
(1)若△BPQ与△ABC相似,求t的值;
(2)连接AQ、CP,若AQ⊥CP,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠A=70°,若三角形内有一点P到三边的距离相等,则∠BPC=_____;若三角形内有一点M到三个顶点的距离相等,则∠BMC=_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com