【题目】旭日商场销售A,B两种品牌的钢琴,这两种钢琴的进价和售价如下表所示:
A | B | |
进价(万元/.套) | 1.5 | 1.2 |
售价(万元/套) | 1.65 | 1.4 |
该商场计划购进两种钢琴若干套,共需66万元,全部销售后可获毛利润9万元.(毛利润=(售价﹣进价)×销售量)
(1)该商场计划购进A,B两种品牌的钢琴各多少套?
(2)通过市场调查,该商场决定在原计划的基础上,减少A种钢琴的购进数量,增加B种钢琴的购进数量,已知B种钢琴增加的数量是A种钢琴减少数量的1.5倍,若用于购进这两种钢琴的总资金不超过69万元,问A种钢琴购进数量至多或减少多少套?
【答案】
(1)解:设该商场计划购进A种品牌的钢琴x套,B种品牌的钢琴y套,依题意有
,解得: .
答:该商场计划购进A种品牌的钢琴20套,B种品牌的钢琴30套
(2)解:设A种钢琴购进数量减少a套,则B种钢琴购进数量增加1.5a套,
1.5(20﹣a)+1.2(30+1.5a)≤69,
解得:a≤10.
答:A种钢琴购进数量至多减少10套
【解析】(1)首先设该商场计划购进A种品牌的钢琴x套,B种品牌的钢琴y套,根据题意即可列方程组 ,解此方程组即可求得答案;(2)首先设A种钢琴购进数量减少a套,则B种钢琴购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.
科目:初中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD,E为AD的中点,异面直线AP与CD所成的角为90°.
(Ⅰ)证明:△PBE是直角三角形;
(Ⅱ)若二面角P﹣CD﹣A的大小为45°,求二面角A﹣PE﹣C的余弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为( )
A.x1=0,x2=6
B.x1=1,x2=7
C.x1=1,x2=﹣7
D.x1=﹣1,x2=7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则关于点D的说法正确的是( )
甲:点D在第一象限
乙:点D与点A关于原点对称
丙:点D的坐标是(﹣2,1)
丁:点D与原点距离是 .
A.甲乙
B.丙丁
C.甲丁
D.乙丙
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上,则这四个点组成的四边形ABB′A′的面积是( )
A.4
B.6
C.9
D.13
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是( )
A.19,20,14
B.19,20,20
C.18.4,20,20
D.18.4,25,20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.
(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .
(2)若甲、乙均可在本层移动.
①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
②黑色方块所构拼图是中心对称图形的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.
(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?
(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是 m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.参考数据:sin8°≈ ,tan8°≈ ,sin10°≈ ,tan10°≈ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com