【题目】计算:
(1) ﹣10﹣1+ ﹣5sin30°+(3.14﹣π)0
(2)已知m2﹣5=3m,求代数式2m2﹣6m﹣1的值.
【答案】
(1)解:原式=11﹣0.1+3﹣2.5+1=12.4
(2)解:∵m2﹣5=3m,即m2﹣3m=5,
∴原式=2(m2﹣3m)﹣1=10﹣1=9
【解析】(1)原式利用算术平方根、立方根定义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)原式变形后,将已知等式整理代入计算即可求出值.
【考点精析】通过灵活运用零指数幂法则和整数指数幂的运算性质,掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(am)n=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数)即可以解答此题.
科目:初中数学 来源: 题型:
【题目】已知函数f(x)=|2x+3|+|2x﹣1|. (Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为( )
A.13
B.17
C.18
D.25
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】旭日商场销售A,B两种品牌的钢琴,这两种钢琴的进价和售价如下表所示:
A | B | |
进价(万元/.套) | 1.5 | 1.2 |
售价(万元/套) | 1.65 | 1.4 |
该商场计划购进两种钢琴若干套,共需66万元,全部销售后可获毛利润9万元.(毛利润=(售价﹣进价)×销售量)
(1)该商场计划购进A,B两种品牌的钢琴各多少套?
(2)通过市场调查,该商场决定在原计划的基础上,减少A种钢琴的购进数量,增加B种钢琴的购进数量,已知B种钢琴增加的数量是A种钢琴减少数量的1.5倍,若用于购进这两种钢琴的总资金不超过69万元,问A种钢琴购进数量至多或减少多少套?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4,P是BC边上一动点(不含B,C两点),将△ABP沿直线AP翻折,点B落在点E处,在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.
(1)发现:
△CMP和△BPA是否相似,若相似给出证明,若不相似说明理由;
(2)思考:
线段AM是否存在最小值?若存在求出这个最小值,若不存在,说明理由;
(3)探究:
当△ABP≌△ADN时,求BP的值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/小时,直达;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州10分钟,若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com