【题目】已知函数f(x)=|2x+3|+|2x﹣1|. (Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.
【答案】解:(Ⅰ)不等式f(x)<8,即|2x+3|+|2x﹣1|<8, 可化为① 或② 或③ ,
解①得﹣ <x<﹣ ,解②得﹣ ≤x≤ ,解③得 <x< ,
综合得:﹣ <x< ,即原不等式的解集为{x|﹣ <x< }.
(Ⅱ)因为∵f(x)=|2x+3|+|2x﹣1|≥|(2x+3)﹣(2x﹣1)|=4,
当且仅当﹣ ≤x≤ 时,等号成立,即f(x)min=4,
又不等式f(x)≤|3m+1|有解,则|3m+1|≥4,解得:m≤﹣ 或m≥1
【解析】(Ⅰ)通过讨论x的范围,得到关于x的不等式组,解出即可(Ⅱ)求出f(x)的最小值,解关于m的不等式,解出即可.
【考点精析】掌握绝对值不等式的解法是解答本题的根本,需要知道含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
科目:初中数学 来源: 题型:
【题目】某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:
t | [0,15) | [15,30) | [30,45) | [45,60) | [60,75) | [75,90) |
男同学人数 | 7 | 11 | 15 | 12 | 2 | 1 |
女同学人数 | 8 | 9 | 17 | 13 | 3 | 2 |
若将日均课外阅读时间不低于60分钟的学生称为“读书迷”.
(1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人?
(2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动. (i)求抽取的4位同学中既有男同学又有女同学的概率;
(ii)记抽取的“读书迷”中男生人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《孙子算经》是中国古代重要的数学著作,约成书于四、五世纪,也就是大约一千五百年前,传本的《孙子算经》共三卷.卷中有一问题:“今有方物一束,外周一匝有三十二枚,问积几何?”该著作中提出了一种解决此问题的方法:“重置二位,左位减八,余加右位,至尽虚加一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数n是8的整数倍时,均可采用此方法求解.如图,是解决这类问题的程序框图,若输入n=40,则输出的结果为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD,E为AD的中点,异面直线AP与CD所成的角为90°.
(Ⅰ)证明:△PBE是直角三角形;
(Ⅱ)若二面角P﹣CD﹣A的大小为45°,求二面角A﹣PE﹣C的余弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的方程为x﹣y+4=0,曲线C的参数方程 (α为参数) (Ⅰ)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标 ,判断点P与直线l的位置关系;
(Ⅱ)设点Q为曲线C上的一个动点,求它到直线l的距离的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为( )
A. =
B. =
C. =
D. =
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com