【题目】如图,矩形ABCD中,AB=2,AD=4,动点E在边BC上,与点B、C不重合,过点A作DE的垂线,交直线CD于点F.设DF=x,EC=y.
(1)求y关于x的函数关系式,并写出x的取值范围.
(2)当CF=1时,求EC的长.
(3)若直线AF与线段BC延长线交于点G,当△DBE与△DFG相似时,求DF的长.
【答案】(1),(0<x<8);(2)EC的长为或;(3)DF的长为或.
【解析】
试题(1)易证△ADF∽△DCE,然后运用相似三角形的性质即可得到y与x的关系,然后根据y的范围就可得到x的范围;
(2)由于点F的位置不确定,需分点F在线段DC及点F在线段DC的延长线上两种情况进行讨论,然后利用y与x的关系即可解决问题;
(3)由∠DEC=∠AFD=90﹣∠EDC可得∠BED=∠DFG,因而在△DBE和△DFG中,点E与点F是对应点,故当△DBE与△DFG相似时,可分△DEB∽△GFD和△DEB∽△DFG两种情况进行讨论,然后只需用x的代数式表示ED、FG、EB,再运用相似三角形的性质即可解决问题.
试题解析:(1)如图1,
∵四边形ABCD是矩形,
∴DC=AB=2,∠ADC=∠BCD=90°.
又∵AF⊥DE,
∴∠ADF=∠DCE=90°,∠DAF=∠EDC=90°﹣∠DFA,
∴△ADF∽△DCE,
∴,
∴,即.
∵点E在线段BC上,与点B、C不重合,
∴0<y<4,∴0<<4,即0<x<8,
∴,(0<x<8);
(2)①当点F线段DC上时,
∵CF=1,
∴DF=x=2﹣1=1,此时CE=y=x=;
②当点F线段DC延长线上时,
∵CF=1,
∴DF=x=2+1=3,此时CE=y=x=;
∴当CF=1时,EC的长为或;
(3)在Rt△ADF中,AF=,
在Rt△DCE中,DE=,
∵四边形ABCD是矩形,
∴AD∥BC,
∴△ADF∽△GCF,
∴,
∴FG=.
∵∠DEC=∠AFD=90﹣∠EDC,
∴∠BED=∠DFG,
∴当△DBE与△DFG相似时,可分以下两种情况讨论:
①△DEB∽△GFD,如图2,
则有,
∴EDFD=FGEB,
∴(4﹣x),
解得:x=.
②若△DEB∽△DFG,如图3,
则有,
∴EDFG=EBFD,
∴(4﹣x),
整理得:3x2+8x﹣16=0,
解得:x1=,x2=﹣4(舍去).
综上所述:DF的长为或.
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,连接EF交AD于G,下列结论:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④当∠BAC为60°时,△AEF是等边三角形,其中正确的结论的个数为( )
A.2B.3C.4D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,点O在AB上,⊙O经过A、D两点,交AC于点E,交AB于点F.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径是2cm,E是弧AD的中点,求阴影部分的面积(结果保留π和根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为满足市场需求,某超市在中秋节来临前夕,购进一种品牌月饼,每盒进价是元.超市规定每盒售价不得少于元.根据以往销售经验发现;当售价定为每盒元时,每天可以卖出盒,每盒售价每提高元,每天要少卖出盒.
当每盒售价定为多少元时,每天销售的利润(元)最大?最大利润是多少?
为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于元.如果超市想要每天获得元的利润,那么超市每天销售月饼多少盒?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.
(1)当t=2时,求线段PQ的长度;
(2)当t为何值时,△PCQ的面积等于5cm2?
(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,“主收1号”小麦的试验田是边长为am(a>1)的正方形去掉一个边长为1m的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a﹣1)m的正方形,两块试验田的小麦都收获了500kg.
(1)哪种小麦的单位面积产量高?
(2)若高的单位面积产量是低的单位面积产量的(kg)倍,求a的值
(3)利用(2)中所求的a的值,分解因式x2﹣ax﹣108=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的图象经过点、,顶点为,与轴交于点.
求抛物线的解析式和顶点的坐标;
如图,为线段上一点,过点作轴平行线,交抛物线于点,当的面积最大时,求点的坐标;
如图,若点是直线上的动点,点、、所构成的三角形与相似,请直接写出所有点的坐标;
如图,过作轴于点,是轴上一动点,是线段上一点,若,则的最大值为________,最小值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的表达式为.
求此抛物线与轴、轴的交点坐标;
求抛物线与坐标轴围成的三角形的面积;
在上述的抛物线上是否存在这样的点,使?若存在,求出点的坐标.
在上述的抛物线上是否存在这样的点,使?若存在,求出点的坐标.
在上述的抛物线上是否存在这样的点,使?若存在,求出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是__________,据此判断该游戏__________(填“公平”或“不公平”).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com