【题目】如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
【答案】(1)见解析(2)成立
【解析】
试题(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.
(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可
得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.
试题解析:(1)在正方形ABCD中,
∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)GE=BE+GD成立.
理由是:∵由(1)得:△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE=CF
∵∠GCE=∠GCF, GC=GC
∴△ECG≌△FCG(SAS).
∴GE=GF.
∴GE=DF+GD=BE+GD.
科目:初中数学 来源: 题型:
【题目】观察下列数表
根据数表反映的规律,猜想第6行与第6列的交叉点上的数应为多少.
(1)第n行与第n列的交叉点上的数应为多少.(用含正整数n的式子表示)
(2)计算左上角2×2的正方形里所有数字之和,即: 在数表中任取几个2×2的正方形,计算其中所有数字之和,归纳你得出的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数y= 的图象在二四象限,一次函数为y=kx+b(b>0),直线x=1与x轴交于点B,与直线y=kx+b交于点A,直线x=3与x轴交于点C,与直线y=kx+b交于点D.
(1)若点A,D都在第一象限,求证:b>﹣3k;
(2)在(1)的条件下,设直线y=kx+b与x轴交于点E与y轴交于点F,当 = 且△OFE的面积等于 时,求这个一次函数的解析式,并直接写出不等式 >kx+b的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n-2)180°.例如:如图四边形ABCD的内角和:N=∠A+∠B+∠C+∠D=(4-2)×180°=360°问:(1)利用这个关系式计算五边形的内角和;(2)当一个多边形的内角和N=720°时,求其边数n.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)下面是小马虎解的一道题
题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.
解:根据题意可画出图,
∵∠AOC=∠BOA-∠BOC
=70°-15°
=55°,
∴∠AOC=55°.
若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小芳在本学期的体育测试中,1分钟跳绳获得了满分,她的“满分秘籍”如下:前20秒由于体力好,小芳速度均匀增加,20秒至50秒保持跳绳速度不变,后10秒进行冲刺,速度再次均匀增加,最终获得满分,反映小芳1分钟内跳绳速度y(个/秒)与时间t(秒)关系的函数图象大致为( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两地相距900km,一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,行了4小时后两车相遇,快车的速度是慢车速度的2倍.
(1)请求出慢车与快车的速度?
(2)两车出发后多长时间,它们相距225千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用“☆”定义一种新运算:对于任意有理数a和b,
规定a ☆. 如:1☆.
(1)求(﹣2)☆5的值;
(2)若 ☆3=8,求a的值;
(3)若m=2☆x, n=(-1-x)☆3(其中x为有理数),试比较大小m n(填“>”、“<”或“=”).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com