【题目】在△ABC中,∠A90°,ABAC.
(1)如图1,△ABC的角平分线BD,CE交于点Q,请判断“”是否正确:________(填“是”或“否”);
(2)点P是△ABC所在平面内的一点,连接PA,PB,且PB PA.
①如图2,点P在△ABC内,∠ABP30°,求∠PAB的大小;
②如图3,点P在△ABC外,连接PC,设∠APCα,∠BPCβ,用等式表示α,β之间的数量关系,并证明你的结论.
【答案】(1)否;(2)①45°;②.
【解析】试题分析:
(1)如图4,把△AQC顺时针旋转90°得到△AQ1B,连接QQ1,则由题意易得QQ1=AQ,由已知条件可证∠BQ1Q∠Q1BQ,从而可得BQQQ1=AQ;
(2)①如图5,过点PD⊥AB于点,结合∠ABP=30°可得PD=PB,结合PB=PA可得PD=PA,由此即可得到sin∠PAB=,结合∠PAB是锐角即可得到∠PAB=45°;
②如图6,把△ABP绕点A逆时针旋转90°得到△ACD,连接DC,DP,则由旋转的性质可得: ∠1=∠2,PB=CD,∠DAP=90°,AD=AP,由此可得PD=PA,结合PB=PA可证得PD=DC,从而得到∠PCD=∠CPD=45°+α,由此可得∠3=180°-2∠CPD=90°-2α,结合∠1=∠2= ,可得∠1+∠3=90°- =∠ADP=45°,变形即可得到: .
试题解析:
(1)如图4,把△AQC绕点A顺时针旋转90°得到△AQ1B,连接QQ1,
由旋转的性质可得:AQ1=AQ,∠Q1AQ=90°,
∴QQ1=AQ,
∵BQ、CQ分别平分∠ABC、∠ACB,
∴AQ平分∠BAC,
∴∠AQ1C=∠AQC=112.5°,
∴∠BQ1Q=112.5°-45°=67.5°,
∵∠Q1BQ=45°,
∴∠Q1BQ∠BQ1Q,
∴BQQ1Q=AQ.
故答案为:“否”;
(2)① 如图5,作PD⊥AB于D,则∠PDB=∠PDA=90°,
∵ ∠ABP=30°,
∴.
∵,
∴.
∴.
又∵∠PAB是锐角,
∴∠PAB=45°.
②,理由如下:
如图6,把△ABP绕点A逆时针旋转90°得到△ACD,连接DC,DP,则由旋转的性质可得: ∠1=∠2,PB=CD,∠DAP=90°,AD=AP,
∴,∠ADP=∠APD=45°.
又∵,
∴ PD=PB=CD.
∴ ∠DCP=∠DPC.
∵ ∠APCα,∠BPCβ,
∴, .
∴.
∴.
∴.
科目:初中数学 来源: 题型:
【题目】如图,抛物线 (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程 的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.
(1)如图1, 当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);
(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;
(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“作一个30°角”的尺规作图过程.
已知:平面内一点A.
求作:∠A,使得∠A30°.
作法:如图,
(1)作射线AB;
(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;
(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD.
∠DAB即为所求的角.
请回答:该尺规作图的依据是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中, , °,点D是线段BC上的动点,将线段AD绕点A顺时针旋转50°至,连接.已知AB2cm,设BD为x cm,B为y cm.
小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)
(1)通过取点、画图、测量,得到了与的几组值,如下表:
0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.3 | ||
1.7 | 1.3 | 1.1 | 0.7 | 0.9 | 1.1 |
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:
线段的长度的最小值约为__________ ;
若 ,则的长度x的取值范围是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(个)之间有如下关系:
日销售单价x(元) | 3 | 4 | 5 | 6 |
日销售量y(个) | 20 | 15 | 12 | 10 |
(1)猜测并确定y与x之间的函数关系式,并画出图象;
(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式,
(3)若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】古代阿拉伯数学家泰比特·伊本·奎拉对勾股定理进行了推广研究:如图(图1中为锐角,图2中为直角,图3中为钝角).
在△ABC的边BC上取, 两点,使,则∽∽, , ,进而可得 ;(用表示)
若AB=4,AC=3,BC=6,则 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P(t,0)是x轴上的动点,Q(0,2t)是y轴上的动点.若线段PQ与函数y=﹣|x|2+2|x|+3的图象只有一个公共点,则t的取值是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2-5x+c的图象如图所示.
(1)试求该二次函数的解析式和它的图象的顶点坐标;
(2)观察图象回答,x何值时y的值大于0?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com