分析 (1)由条件证明△ABD≌△CBE,就可以得到结论;
(2)由△ABD≌△CBE就可以得出∠BAD=∠BCE,就可以得出∠FHC=90°,进而得出结论.
解答 (1)证明:∵∠ABC=∠DBE,
∴∠ABC-∠CBD=∠DBE-∠CBD,
∴∠ABD=∠CBE,
在△ABD和△CBE中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABD=∠CBE}\\{BD=BE}\end{array}\right.$,
∴△ABD≌△CBE(SAS),
∴AD=CE;
(2)AD⊥CE,理由是:
证明:延长AD交BC于F,交CE于H,![]()
∵△ABD≌△ACE,
∴∠BAD=∠BCE.
∵∠CAB=90°,
∴∠BAD+∠AFB=90°,
∴∠BCE+∠AFB=90°.
∵∠CFH=∠AFB,
∴∠BCE+∠CFH=90°,
∴∠FHC=90°.
∴AD⊥CE;
点评 本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,等腰直角三角形的性质的运用,勾股定理的运用,解答时运用全等三角形的性质求解是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com